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Abstract
Procedural methods present one of the most powerful techniques for authoring a vast variety of computer graphics
models. However, their massive applicability is hindered by the lack of control and a low predictability of the re-
sults. In the classical procedural modeling pipeline, the user usually de�nes a set of rules, executes the procedural
system, and by examining the results attempts to infer what should be changed in the system de�nition in order to
achieve the desired output. We present guided procedural modeling, a new approach that allows a high level of
top-down control by breaking the system into smaller building blocks that communicate. In our work we generalize
the concept of the environment. The user creates a set of guides. Each guide de�nes a region in which a speci�c
procedural model operates. These guides are connected by a set of links that serve for message passing between
the procedural models attached to each guide. The entire model consists of a set of guides with procedural mod-
els, a graph representing their connection, and the method in which the guides interact. The modeling process is
performed by modifying each of the described elements. The user can control the high-level description by editing
the guides or manipulate the low-level description by changing the procedural rules. Changing the connectivity
allows the user to create new complex forms in an easy and intuitive way. We show several examples of procedural
structures, including an ornamental pattern, a street layout, a bridge, and a model of trees. We also demonstrate
interactive examples for quick and intuitive editing usingphysics-based mass-spring system.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms

1. Introduction

Procedural modeling means generating content by a pro-
cedure or a program, and it is one of the most exciting
areas of computer graphics because of the intriguing con-
cept ofdatabase ampli�cation[Smi84]. However, for nearly
twenty years procedural models were used only in their clas-
sical areas, such as plants, noise generation [Per85], parti-
cle systems, or fractals [EMP� 03]. In the past few years,
procedural models have undergone a little renaissance and
have found a way into new areas. They are used in urban
modeling [ARB07,MWH� 06,WWSR03], and can be com-
bined with physics [BCNG10,WOD09], sketching [APS09,
IMIM08], and animation [BCNG10].

Among the most important problems of procedural mod-
els that hinder their real-life application is the gap between
the model description and the control of its execution. The
description is usually cryptic, is dif�cult to understand,and
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involves complicated relations between the model elements,
therefore the steps performed when the system is executed
are usually beyond imagination. The resulting interaction
with a procedural system is thus in the trial-and-error loop.

Our key observation is thatthe concept of environment
can be generalized. A complex procedural model does not
need to be described as a whole, and it can be divided into
simpler blocks that work in parallel, have no direct in�uence
on each other, but can communicate by using an exogenous
mechanism, such as Open L-systems.

We propose a solution to the problem of low controllabil-
ity of the procedural models by de�ningguided procedural
models. The key idea is to divide the space intoguides–
separate geometrical objects with closed boundaries. Each
guide contains one procedural model. Procedural systems
inside two separate guides cannot interact directly. Guides
are connected bylinks that serve as message passing mech-
anism. When a procedural model inside one guide touches
the link, the message is sent to the corresponding guide and
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a) b) c)

Figure 1: Guided procedural system used to generate and edit a procedural model of a tree. a) The original tree is generated, b)
its guides (lower row) are interactively edited using mass-spring model, and c) some guides are erased and edited individually.

another procedural model is executed. The main advantage
of this control is that the user can handle the overall shape
of the entire model by manipulating the guides, whereas the
local changes are handled on the detailed level of procedu-
ral systems. In this way, we allow for "top down" iterative
modeling, where �rst the overall layout is de�ned, and then
the details are added. Another advantage is thesimplicityof
the editing. Instead of manipulating the procedural system
as a whole, we manipulate small blocks separately. Guides
can be connected using a mass-spring system as shown in
the editing sequence Figure1.

Our paper continues with a description of the previous
work. The method is discussed in Section3, which is fol-
lowed by a description of interactions with the system. Im-
plementation and results are in Section5, and the paper con-
cludes with Section6, which also discusses future work.

2. Previous Work

One of the �rst areas of procedural models, and proba-
bly the most advanced one, includes biological modeling.
In his seminal work [Lin68], Lindenmayer introduced par-
allel string rewriting systems for a description of cellular
subdivision and endogenous information exchange between
cells. The Lindenmayer systems (L-systems) were extended
in many different directions, from which the most impor-
tant present geometrical interpretations of the string letters
and the introduction of special symbols allowing higher lin-
ear topological structures via branching [Pru86]. Various
extensions exist, and most of them are summarized in the
book [PL90]. Recent work include Open L-systems that al-

low for exogenous information exchange via query mod-
ules [PJM94,MP96]. A feedback system, where an L-system
can detect positional information and modify it by an in-
terpretation of the rules was introduced in [PMKL01] and
multiset L-systems were used to describe the communica-
tion of plant ecosystems in [DHL � 98]. Metropolis procedu-
ral modeling was introduced in [TLL � 10]. L-systems share
common problems of procedural systems, the most relevant
to our work being the problem of their controllability.

L-systems are linear as they describe the connection of
one and/or more symbols in a consecutive way. Shape gram-
mars [SG71] deal with connecting of 2-D elements and
they de�ne the replacement or the connections of shapes.
The concept of shape grammars was recently extended
to applications in urban modeling, where the split gram-
mars [WWSR03] were introduced, but the problem of con-
trollability is not solved.

Procedural models can be found in the works that con-
tribute to computer vision and computer graphics. Mülleret
al. described a user-assisted system for façade description
in [MZWG07]. Fit grammars were applied to urban model
reconstruction from images and point clouds in [HKHF09].
and Vanegaset al.matched a prede�ned set of rules to recon-
struct buildings bottom-up from their footprints [VAB10].

Procedural urban modeling has seen an increasing interest
in the computer graphics community since a paper [PM01]
where the authors used Open L-systems to describe the
street and road layout that was completed with 3-D mod-
els of buildings. Recently Müleret al. [MWH� 06] intro-
duced CGA - a grammar-based description of buildings.
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The procedural generation of street layouts was described
in [CEW� 07], and a procedural generation of roads, tunnels,
and bridges was described in [GPMG10]. The controllabil-
ity of procedural models is leveraged by user interaction,
but in general, the user has limited control over the �nal re-
sults. In [GPMG10], user-sketched graphs of in�uences de-
�ne global behavior of the system; local control however,
is not available. The interactive editing of procedural rules
in [LWW08] exploits higher levels of user interaction and
allows for an immediate visual feedback of the results.

Ijiri et al. introduced a sketching interface to a procedural
model in [IOI06]. A parametric procedural rule has the ac-
tual values of its formal parameters set by a user sketch. This
allows for a limited level of control, because the actual mod-
eling space is de�ned by a single rule. Chenet al.[CNX� 08]
used Markov processes for sketch-based tree modeling and
surface trees for sketch-based procedural surface modeling
were introduced in [SS08].

Recently, several attempts to combine physically-based
modeling and procedural systems have appeared. Arvin and
House [AH02] used a mass-spring model to create architec-
tural design with a high level of control over a �oor lay-
out. This idea was an inspiration for our system, however,
we also provide a low-level control by means of embedded
procedural systems. Moreover, our guides can communicate
and do not act independently. Baxteret al. [BCNG10] used
procedurally built models of plants to interact with physics-
based simulations. Procedural models were directly com-
bined with physics in [WOD09]. Including physics in the
procedural modeling solves many problems, providing, for
example, realistic and feasible results, but it imposes an extra
level of complexity on the creator of the procedural system.

An important open problem of inverse procedural mod-
eling was addressed by [vBM� 10], where the authors
found a complete L-system for a 2-D vector input. Simi-
larly, [BWS10] generates a procedural description of a 3-D
point cloud. In the context of urban models [ARB07] recon-
structs �oor rules from photographs.

3. System Overview

The guided procedural model consists of three basic ele-
ments: theguidesthat are closed shapes, theprocedural sys-
temsinside the guides, andlinks that connect the guides and
provide communication among them. Without loss of gener-
ality our guides are closed planar polygons. Our procedural
systems are Open L-systems [MP96] that allow for a wide
variety of geometric structures and include an advanced con-
trol for exogenous information exchange.

3.1. Guides

Let's denote the set of guidesG = f g1;g2; : : : ;gjGj g and its
individual elementsgi (see Figure2). Guidegi has its shape

de�ned by ki verticesvi
1; vi

2; : : : ; vi
ki

connected with edges
ei

1;ei
2; : : :;ei

ki
. A set of orientedlinks is denoted byL = f l i j g

and we say that the linkl i j starts ingi and ends ing j . The
guides and the links form an oriented graphH = hG;Li with
verticesG and oriented edgesL.

Figure 2: The guided procedural system is a collection of
guides connected with oriented links. Each guide hosts a
procedural system.

The links de�ne topological connectivity of the guides.
However, each guide also stores geometrical information
about the edges from which the links originate and end. For
example, guideg1 in Figure2 has two outgoing links:l12
starts on edgee1

5 andl13 starts on edgee1
3. Correspondingly,

guidesg2 andg3 store information about the links that con-
nect them with the other guides. The �ner subdivision of the
lower side of guideg1 to edgese1

2, e1
3, ande1

4 constrains the
position of the link on the guide. To provide a wide variety
of shapes and a global control over the editing process, we
can also de�ne geometric relations between guides. We can
snap guides together; we can de�ne an exact location of the
connection, or we can manipulate the guides using a mass-
spring system.

3.2. Open L-systems

An Open L-system is a parallel string rewriting system and is
de�ned as a tupleP= hM;w;<i ;whereM is the L-system al-
phabet that contains elementsA(p1; p2; : : : ; pn) called mod-
ules. Modules consist of the lettersA;B; : : : and their parame-
tersp1; p2; : : : pn 2 R. The symbolw 2 M+ (M+ denotes the
re�exive closure) is a non-empty initial string of modules
called the axiom. A set of productions (rules) is denoted by
< . The rules have form

label : A(p0; p1; : : : ; pn) : cond! A� ;

wherelabel is the rule identi�er,cond is a boolean expres-
sion, andA� denotes the re�exive-transitive closure i.e., the
list of all strings including the empty stringe. The symbol!
denotes rewriting of the moduleA(p0; p1; : : : ; pn) with the
string on the right side of the rule. Theepsilon ruleerases
the symbolA(p0; p1; : : : ; pn):

re : A(p0; p1; : : : ; pn) ! e: (1)
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Thequery modulehas form ?D(p0; p1; : : : ; pjPj ) and it sets
the parameterspi by values obtained from the environment.
An example is module ?D(d) that measures distance to an
obstacle. The actual semantics of each query module is de-
�ned by the designer of the L-system. The list of query mod-
ules used in our paper is in Table2.

Modules are interpreted geometrically by a turtle [Pru86]
as described by Table1 The turtle has a position[x;y] and a
heading anglef that de�ne the turtle's state(x;y; f ) and the
seedof an L-system is a tuple

[(x;y; f );P = hM;w;<i ]:

module interpretation
F(D) draw a line of lengthD in the heading dir.
f (D) move in the direction of heading byD
+( d) rotate byd to the left
� (d) rotate byd to the right
[ push the state on the stack
] pop the state from the stack, move to[x;y],

and head in the directionf

Table 1: Turtle interpretation of the modules.

3.3. Open L-systems and Guides

The geometry produced by the L-system can be limited by
the guide. An element of the L-system can be clipped either
partially if its part is outside the guide, or entirely, if its cen-
ter is outside. We use the latter solution which allows for a
partial overlap with the guide as can be seen in Figure4.
Two or more guides may overlap. However, the embedded
L-systems cannot communicate directly, because the guides
and their L-systems are permitted to communicate only via
message passing as described below.

We assign at most one L-system to each guidegi . This
could seem to be a limiting factor, however, any pair of L-
systemsP1 = hM1;w1;< 1i and P2 = hM2;w2;< 2i can be
converted into one by

P = hM1 [ M2;w;< 1 [ < 2 [ f w ! [w1][w2]gi :

We have merged both alphabets and rules, and we have cre-
ated a new axiomw. We have also augmented the rules by a
new one that rewrites the new axiom to the sequence of the
old axiomsw ! [w1][w2].

3.3.1. Seeds and Query Modules

Each guide has a set ofseedsthat de�ne the initial status
of the turtle (its position and heading) and that store the ax-
iom w of an L-system. Multiple seeds are concurrently ex-
panded by the set of rules from the de�ning L-system be-
cause all the rules are applied in parallel. Seeds can be cre-
ated in two different ways, either interactively by the user, or
by receiving a message from another guide via a link.

Our Open L-system has three query modules that allow

the guides to communicate (Table2). First, a query mod-
ule ?DL returns in its parameterd the distance to the closest
edge of the guidegi that contains linkl i j to another guideg j .
Second, a query module ?NL returns the distance to the clos-
est link in the direction of the actual turtle heading. Third,
a query module ?X detects when an L-system crosses the
edge that contains a link and returns its ID. It is also used for
collision detection.

The modules ?D and ?N are used to navigate the L-system
to the edge that stores the link that sends a message to an-
other guide. The number of steps in which an edge is found
is directed by the user because it depends on the de�nition of
the L-system. It can be found in many different ways, for ex-
ample deterministically in a single step or by a random walk
of the turtle where the result is not guaranteed.

After a link is intersected the module ?X informs the en-
vironment (the guidegi ) that it should send a message to
another guide as described below.

3.3.2. Message Passing

Sending a MessageTo provide communication between
guides, we enhance each link by a set oftokens, a concept
borrowed from Petri Nets [Pet77]. A token is stored on the
edge of the start guidegi . When a communication is re-
quired, a token is converted into a message that is sent to
the end guideg j associated with the linkl i j . Two conditions
must be satis�ed to send the message: (1) a token is available
on the link and, (2) the module ?X of the L-system touches
the edge that contains a link. When the message is sent the
number of tokens on the edge is decreased.

Multiple modules can concurrently compete for a token.
For this problem to be solved, a token on a link can be in one
of three states:free, reserved,or used. A free token is avail-
able for any module. However, once a module decides to use
the token, it will change its state toreservedwhich prohibits
other modules from using it. If the module that reserved the
token does not reach it, the state is changed back tofree.

Figure 3: Link li j between guides g1 and g2. The arrows
indicate the incident angle under which the L-system in g1
approaches the edge of the guide and the growth direction of
the new L-system (turtle heading) in guide g2.

The above-described mechanism for linking the guides is
topological. The geometry of the connection is de�ned by
the user when the link is de�ned. The incident direction of
the turtle, the vector the L-system attempts to match, is given
when the link between the two guides is de�ned as shown in
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module input output description
?DL, ?DG, ?DA idtest f ound, d, b, Distance to a link. An optional input is an ididtest. Parameterd is the

idout distance to the closest link, guide, or element of the givenidtest (or any
if idtest is not set), the angleb to the closest point, and theidout of the
closest object. If no such element exists, the parameterf oundis set to 0.

?NL, ?NG, ?NA idtest f ound, d, idout Forward distance. An optional input is an ididtest. Parameterd is the
distance to the closest link, guide, or element of the givenidtest (or any
if idtest is not set) in the turtle direction, and theidout of the closest
object. If no such element exists, the parameterf oundis set to 0.

?X D, idin, f ound, idout Collision detection. The input is the lengthD of an element to be tested
idtest for collision. Optionally, an ididin can be associated with the object. The

collision test can be restricted to an object with an ididtest. The parameter
f oundis set to 1 if there is a collision, in which case the ididout is set to
the id of the intersecting element, guide, or a link.

Table 2: Communication modules of our Open L-systems. An input parameter not listed is passed through unchanged.

Figure3. Note that the parameters of the moduleX as it in-
tersects the link are available in the seed module in the end
guide. This way the L-system can send additional informa-
tion through the link.

Receiving a MessageWhen the end guideg j receives a
message, it seeds an L-system on the receiving edge. The
seeded L-system is de�ned by the user when the system is
created simply by dragging the L-system from the menu to
the guide. The exact location of the seed on the edge is de-
�ned by the intersection point on the starting edge, and the
heading direction is de�ned by the de�nition of the link as
depicted in Figure3. In this way we can make the transition
between edges of two guidesC0 or C1 continuous.

The condition of seeding the L-system on an exact loca-
tion of the edge is not restrictive because the L-system can
perform a linear transformation by executing the rule

A ! +( a) f (D):

3.3.3. L-systems Execution

Let's recall that the guided procedural model is stored as
an oriented graphH = hG;Li with verticesG and oriented
edgesL. There are two kinds of seeds possible in each guide.
Explicit seeds are de�ned by the user, andimplicit seeds re-
sult from a message passed from another guide.

We create a set of active L-systems that are being ex-
ecuted, which we denote byLe. This set is initialized by
the explicitly de�ned seeds. We execute all the L-systems
in the guides fromLe in parallel using a technique similar
to [LWW09]. If the message-passing module ?X touches an
edge, we add the generated seed into theLe and execute it
immediately. This process repeats untilLe is not empty. Be-
cause the number of tokens is �nite, the procedure will �n-
ish in �nite time. New seeds can be created while another
L-system is already being executed.

3.3.4. L-systems Update

The L-systems in a guide may require recalculation. This can
happen when an interactive operation with the guide occurs,
if there is a change of the structure of links, or if it is re-
quested manually by the user. When the update of a guide is
required, we perform a local incremental update of the guide
and its children. We �rst erase all of the L-systems in the
guide, and reset the explicit seeds as well as the tokens on
the edges. The L-systems of all included seeds are then re-
calculated in parallel, regardless of whether they are implicit
or explicit. Messages are sent to all dependent guides and
their L-systems are recalculated in the same way.

The communication overhead is negligible compared to
the time required to recalculate the L-systems. However,
only a part of the model is recalculated, so our approach is
faster than calculating the entire model from the scratch as
would be the case of a single procedural model.

4. Interaction

The main objective of user interaction is a minimal, intuitive,
easy-to use way creation and manipulation of guides. The
L-systems can be created beforehand, stored as XML �les,
loaded at the beginning of the execution, and available from
a drag-and-drop menu. We have created various procedural
models that we show in Section5 and on the video.

4.1. Guides and Links De�nition and Editing

Creating a guide is done by entering the vertices of the in-
put polygon. The seeds of the L-systems are then de�ned
interactively as a position and orientation, and the L-system
is attached from a menu. Once the guides are de�ned, their
links are created by clicking inside a guide and crossing the
corresponding edge. This operation is done twice, �rst for
the start guide, then for the end guide. The number of asso-
ciated tokens can be set from a menu.

Our system allows interactive translation, rotation, and
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scaling of the guides. These operations can be performed
before the L-system execution for �ne-tuning the shapes. If
they are applied after the L-system execution, the guides are
updated using the mechanism described in Section3.3.4.

Manual manipulation of guides can be tedious if a large
change is required. To simplify this, our system also allows
for higher-level operations with guides. Guides can be at-
tached to each other by use of a snap operation.

4.2. Mass-Spring Editing

Another feature that allows for high-level guide editing isa
physics-based mass-spring system [WB97]. Vertices of the
guides are treated as particles with mass, and the edges as
springs with the resting length set to their initial lengths. Se-
lected vertices of each guide are also connected by diagonal
springs to better preserve the shape of the guides. When two
guides are snapped together, their particles and springs are
shared on the overlapping vertices and edges. Guides that
are not located next to each other may require a hard link
that does not change. This is provided by user-de�ned stiff
springs between the guides. In this way two links will not
move relatively to each other when edited.

When editing the guide, we select a particle and we con-
strain its relative position to the position of the mouse. The
positions of the remaining particles are then obtained froma
solution of the mass-spring system.

5. Implementation and Results

We have implemented our system in C++ with the sup-
port for OpenGL visualization. All examples were gener-
ated on an IntelR
 Xeon R
 CPU E5530 quad core running
at 2.4GHz. The computer is equipped with 12GB of memory
and NVIDIA R
 GTX 480 GPU with 1.5GB of memory.

The creation of L-systems in the examples presented be-
low took 30 minutes to 1 h for each, based on their complex-
ity. Writing an L-system is still a dif�cult task, however, each
L-system is created and edited separately, and it can use the
links and guide edges to guide the growth in a desired direc-
tion. Thus this task is signi�cantly simpli�ed as compared
to the editing of a large L-system, in which the overall shape
and local behavior are hard to control. The creation of the
guides and their connection took less than 3 minutes. The
�ne-tuning of the guides communication took less than 10
minutes in the most complicated case in Section5.4.

The L-systems are stored in an XML �le and each is
about 10-30 lines long. The most complicated L-system has
11 rules. The response of the system depends on the rules,
the number of seeds, the number of concurrently running
L-systems, and the number of their elements. If a large num-
ber of elements is used and a large number of collisions is
checked, the system slows down as it did in the example in
Figure7, where more than 85,000 elements were used and

the generation of the model took 45 seconds. For most of the
other examples, this took less than one second. The actual
bottleneck of the application is the collision detection, so we
use kd-trees to speed-up the collision detection. On the other
hand, collisions are checked only within the elements inside
each guide and not with all the elements in the scene, there-
for the guides implicitly simplify the collision detection.

5.1. Palm Tree

The example in Figure4 shows guided growth, where multi-
ple guides with simple L-systems and intuitive connections
are used to create the structure.

a) b) c)

Figure 4: A structure generated by two simple L-systems
(trunk and leaves) and a set of guides. a) The original guide
layout and the generated structure. b) The new structure is
created by modifying the guides. c) The resulting structureis
generated by re-running the same procedural model.

Figure 4 a) shows the set of guides and the generated
structure, and Figure4 b) shows the modi�ed guides. We
�nd that the palm shape can be easily controlled top-down
by changing the shape of the guide without actually modi-
fying the underlying L-systems. A similar structure could be
generated bottom-up by a single L-system; however, making
the local changes would require complicated modi�cation of
the rules. The single L-system would also be more compli-
cated. The rules that produce our structure are rather simple.
The set of rules for the trunk guides is:

(1) ?seed(pos;a) ! +( a)[?DL(D)]

(2) ?DL( f ound;b;D) : f ound!

+( b � 0:5)?X(D) f (D)?DL(D)

(3) ?DL( f ound) ! e

(4) ?X( f ound;D) : f ound! F(D)cut

(5) ?X( f ound;D) ! F(D)

The L-system grows a palm trunk from the seed point toward
the link to the next guide. The �rst rule rotates the turtle by
the anglea given by the seed and inserts the query symbol
?DL which queries the direction to a link. The symbol ?DL
has a parameterDthat stores the desired length of a segment.
The parameterf ound of the symbol ?DL is set to one if a
link is found. In this case, rule (2) creates a new symbol ?X
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rotated towards the link by a half the angleb between the
direction to the link and the current turtle orientation. Rule
(3) stops growth if a link is not found. The parameterf ound
of the symbol ?X is set to one if there is a collision with the
guide. In this case rule (4) is applied, the growth stops, the
trunk segmentF(D) of the lengthD is inserted, and the rest
of the string is cut. A symbol that intersects a guide initiates
the link and thus the seed in the linked guide. Rule (5) places
a trunk segmentF if there is no collision.

Once the growth reaches guides for compound leaves, the
second L-system is executed in each of these guides. The set
of rules for the compound leaf guides is

(1) ?seed(pos;aLINK) ! +( a)[?DL(D)]

(2) ?DL( f ound;d;b;D) : f ound!

+( b)?X(D;d) f (D)?DL(D)

(3) ?DL( f ound) ! e

(4) ?X( f ound) : f ound! cut

(5) ?X( f ound;D;d) ! F(D)L(d;D� 5)

(6) L(d;D) : d > 0:1 ! [+( 60)E(D)][� (60)E(D)]

(7) L(d;D) ! [+( 600� d)E(D)][� (600� d)E(D)]

Rules (1-5) have a similar function as in the previous L-
system. In rule (2) the distanced to the link, returned by
symbol ?DL, is stored with the symbol ?X. Rule (5) creates
an additional moduleL that puts leaf bladesE on the branch,
using rules (6-7). Rule (6) places two opposite blades at 60o

angle, as long as the distanced to the link is above 0.1. Rule
(7) is applied ford � 0:1 and it gradually reduces the blade
angle from 60o to zero as the stem approaches the link. Rules
(2-5) act as global environment sensor. As depicted in Fig-
ure4, the L-system tends to grow to the link on the opposite
side of the guide. However, this link has no token and there-
fore produces no messages. It is used only as a navigation
of the L-system growth. The runtime of the model was 0.11
second with 481 elements in the �nal image.

5.2. Spirals

A more complex example in Figure5 shows a spiral that
initiates lateral spirals in the attached guides. The spiral in
the main guide is generated by an L-system that has 11 rules,
but the core functionality is captured by the following two:

(1) ?NA( f ound;d;D) : f ound AND d> D� 10 !

+( 15� D0=d)?X(D) f (D)?NA(D� 0:995)

(2) ?NA( f ound;d;D) : f ound AND d> D0=3 !

+( 50� D0=d)?X(D) f (D)?NA(D� 0:995)

The tip of the spiral senses the distance to the nearest
guide boundary or the nearest element in the guide in the
current turtle direction using the symbol ?NA. The growth di-
rection is changed by an angle that is inversely proportional

Figure 5: A spiral generated by two simple L-systems and
a set of guides. The main spiral spawns a lateral branch
when it sees the proximity of a link. When the lateral branch
touches the link, it sends a message to the end guide that
generates another spiral.

to the returned distanced. Moreover, when the spiral gets too
close to another element the angle increases in rule (2). The
new segment is shorter by a factor of 0.995. If a collision is
detected or the segment becomes shorter than the third of the
initial lengthD0 the growth stops.

Other rules are used to sense the closest edge that contains
a link. If the edge is within its proximity, it sends a lateral
branch to it. When the branch reaches the edge, it sends a
message to the other guide which generates another spiral.
A feedback loop mechanism is also implemented to avoid
multiple branches reaching one edge. Once a branch is sent
to an edge, no more branches are generated to the link with
the same ID by marking the token asreserved.

The lateral guides have a simpli�ed version of the same al-
gorithm for spiral generation that does not provide the mech-
anism for sending lateral branches. The second L-system has
only 7 rules. The total time to generate this example was 8
seconds with 1,900 elements in the scene.

5.3. Dinosaur

The dinosaur from Figure6 was inspired by [MP96] and has
been created by two L-systems. One was used for legs, the
neck, and the tail. It grows segments that follow the guide,
similarly to the mechanism captured by the two rules in
the previous section that are modifying the growth direction
based on the distance to an edge. The leaves in the body, the
head, and the tail tip are created at random positions, and
their rotations and colors are also randomized.
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Figure 6: The overall layout of this structure is controlled
by the guides (upper image), and the inner structure is gen-
erated by two simple L-systems.

This is an example, in which the guided procedural mod-
eling enabled the modeler to capture the result by using
much simpler L-systems compared to a complicated L-
system of a branching structure that would try to grow into
the dinosaur's neck and tail. The entire structure was gener-
ated in 2 seconds and contains more than 10,000 elements.

5.4. Urban Layout

Figure 7 shows an image of an automatically created ur-
ban layout. This example was inspired by the paper [PM01]
where the authors used Open L-systems to describe a street-
and-road layout that was completed with 3-D models of
buildings. The layout has �ve guides, and the execution
starts in the middle with the star like street layout that sends
a large number of tokens over the edges to the neighboring
guides that create regular patterns.

Figure 7: A guided procedural system generated this com-
plex urban layout, while street continuity across the guides
is provided by passing messages.

The L-system to generate the circular street layout has 51
lines and 9 rules, and the rectangular has 29 lines with 4
rules. The circular layout generates, in parallel, �ve arterial
streets in a star like pattern. They generate circular arterial
streets that automatically detect the corresponding points on
the neighboring arteries and attempt to connect to them. All

arterial streets can detect edges with a link and send mes-
sages to the neighboring guide. If this happens, the next
guide starts another arterial street that continues in the same
direction. In contrast, the second guide generates a regular
pattern. Once the arterial street cannot continue, it executes
a rule that generates a simple rectangular layout of parcels.

This is the most resource-demanding example. Every rule
has a query symbol that detects distance to an intersection,
and one that detects edges with links. The total number of el-
ements generated in 70 iterations was 85,000, the maximum
number of checked collisions was 6 million, and the maxi-
mum time required to regenerate the model was 45 second.

Figure 8: An individual tree grown inside a single guide.

5.5. Tree model

Here we want to show the advantage of using guides for
classical procedural structures. The tree in Figure8 is an ex-
ample of a simple branching L-system grown inside a sin-
gle guide. As the model grows, each branch creates one or
two lateral branches. The probability of creating the lateral
branches depends on the desired branch density, and the dis-
tance from the root, which is measured in the number of
segments. Branches above a certain distance from the root
create cluster of leaves that bend downwards.

In contrast, the tree in Figure1 fully utilizes guides. Un-
like the �rst tree that cannot be interactively modi�ed, here
the bottom branches and parts of the tree crown are de�ned
separately in respective guides. The branch L-systems are
much simpler than in the previous case. They just grow a se-
quence of segments that avoid the guide boundary, and seek
the link at the opposite end of the guide. The branch clusters
are grown using the same system as the one for the individ-
ual tree, they only start at a higher level. The information
about the level is sent from each parent guide as a parameter
of symbol ?X.

These two examples are two extreme cases provided by
our description. In the �rst one a single L-system controls
the entire model and nearly no interactivity is possible. The
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second case allows a very high level of control. Simpler L-
systems are speci�ed as well as their communication. There
is virtually a continuous scale between these two cases, and
it is the user's decision how much detail in the structure of
the guides is necessary.

5.6. Mass-Spring Interaction

The existence of several guides de�ning the shape makes it
possible to interactively adjust it by manipulating the guides
without changing the L-systems. Figure1 shows modi�ca-
tions of the tree model from the previous section using our
interactive mass-spring system. Figure1 a) shows the origi-
nal image. In Figure1 b) the structure of the edges was con-
verted into a mass-spring system. Each edge is substituted
by a spring and the user provided a set of interactive opera-
tions. Figure1 c) shows the tree, where one guide was erased
and two were scaled up. The tree has approximately 15,000
elements and its generation takes about 2 seconds. We refer
to the video for examples of the interactive tree editing.

The last example in Figure9a) shows a suspension bridge
de�ned with three L-systems. One L-system creates the
bridge tower, another one the bridge span by placing a set of
beams at a different given cross angles. The third L-system
de�nes the main cable with vertical cables placed a �xed
horizontal distance. The guides control the placement of the
two towers and the lower part of the bridge. The guides for
the main cable are snapped together and the overall shape
of the main cable can be changed by moving a cable guide.
The position of the remaining guides is adjusted using the
physics simulation. The L-systems inside the guides regen-
erate the horizontal cables at the desired spacing, regardless
the shape of curve formed by the main cable. Figure9b)
shows a result after moving just a few guides.

a)

b)

Figure 9: An example of a suspension bridge, de�ned with
guided procedural model with three simple L-systems.

6. Conclusions and Future Work

We have presented guided procedural modeling imple-
mented as guided Open L-systems that extends the concept
of procedural models with exogenous control by generaliz-
ing the concept of environment. Instead of considering the
environment as a single entity, we have divided it into mutu-
ally exclusive worlds, called guides that can communicate
via message passing. The content of the message de�nes
when and where a new L-system is created. The main ad-
vantages of our concept are the "top down" approach to mod-
eling and the simplicity of the user control, addressing two
of the main open problems of procedural systems. Instead of
one large L-system, the user creates a much simpler set of L-
systems that can be edited and tuned individually. The user
also de�nes how the guides communicate with each other.

Our system has various limitations. It is easier to create
and manipulate L-system models in our system, but it does
not eliminate the need of manually writing the L-system pro-
ductions. Although the L-systems are simple, extra attention
is needed to support the communication with guides. In ad-
dition, there may be models that do not lend themselves to
be used in our system. For example, if an upper branch of a
tree should reduce the amount of light received by a lower
branch that is de�ned in another guide an extra communica-
tion between guides would be necessary.

There are several avenues for future work. An obvious
one is an extension of our system into 3-D. However, spe-
cial care will be necessary to determine growth directions
and also the interactive system would be more complicated.
Another extension would be incorporating the concept of
guides into a recently introduced procedural system used
in urban modeling, such as CGA [MWH� 06], split gram-
mars [WWSR03], or shape grammars [SG71]. Another av-
enue for future work is recognizing guides in the process of
inverse procedural modeling [vBM� 10, BWS10]. Analogi-
cally to multifractals [Har01], a scene does not need to be the
result of a single procedural model but it could be a compo-
sition. Also, in our system we have showed one level of mes-
sage passing between guides. Apparently, this process could
be done on multiple levels of hierarchy, but this could also
complicate the user design. Last but not least, a user study to
show the feasibility of design could be done.
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