An immersive virtual environment for learning sign language mathematics

In this paper we describe the development of a new immersive 3D learning environment to increase mathematical skills of deaf children. The application teaches mathematical concepts and ASL (American Sign Language) math terminology through user interaction with fantasy 3D virtual signers and environments. The program can be displayed in immersive devices and includes a gesture control system comprised of a pair of pinch gloves and a 6-degrees-of-freedom wrist tracker.
An immersive virtual environment for learning sign language mathematics

Nicoletta Adamo-Villani*
Purdue University
Edward Carpenter
Purdue University
Laura Arns
Purdue University

ABSTRACT
In this paper we describe the development of a new immersive 3D learning environment to increase mathematical skills of deaf children. The application teaches mathematical concepts and ASL (American Sign Language) math terminology through user interaction with fantasy 3D virtual signers and environments. The program can be displayed in immersive devices and includes a gesture control system comprised of a pair of pinch gloves and a 6-degrees-of-freedom wrist tracker.

Keywords
Virtual Reality, Sign Language Education, 3D Animation, 3D Modeling, Virtual Learning Environments

1 Introduction
Deaf education, and specifically math/science education, is a pressing national problem [Holt et al. 1997] [NSF report 1999]. Our project addresses the need to increase the abilities of young deaf children in math with a unique approach: 3D immersive animated signing. The general goal of our research is development of an immersive virtual learning environment in which deaf children (age K-3) interact with fantasy 3D signers and learn basic ASL math terminology and concepts. The interactive application can be displayed in immersive devices such as the ‘Fakespace Labs FLEX’ [Fakespace Systems FLEX] and is designed to engage deaf learners in "hands-on, minds-on" experiences, leading to deeper understanding of fundamental ideas in accordance with current educational guidelines.

Recently we have created a highly interactive computer animation program (Mathsigner™) for classroom and home learning of K-3 arithmetic skills, aimed at deaf children [Adamo-Villani et al. 2004; Adamo-Villani et al. 2005]. The program, currently in use at the Indianapolis School for the Deaf (ISD), is a web/CD-ROM deliverable ‘desktop’ application which makes use of standard input devices (i.e., mouse and keyboard). It includes 3D animated signers that teach ASL mathematics through a series of interactive activities based on standard math curriculum. Because several research findings suggest that immersive learning applications are more effective than non-immersive ones [Youngblut 1997; NCAC report 2003], we have adapted the Mathsigner™ characters for display in a total-immersion environment, and we have developed a fantasy virtual world in which deaf children learn math concepts by natural interaction and direct experience.

2 Background
Recently, there has been noticeable progress in development of VR applications for people with different types of disabilities. In the area of hearing impairments in particular, efforts have been directed primarily to creation of sign language recognition and synthesis systems [Greenleaf 1992; Vamplew 1996; Hernandez-Rebollar and Kyriakopoulos 2002; Kuroda et al. 2004].

As far as development of virtual learning environments to assist in Deaf education, we have found two noticeable examples of virtual environments for deaf/speech-impaired students: the ‘Virtual Supermarket’ developed at the University of Nottingham in England [Cromby et al. 1995], and the VREAL (Virtual Reality Education for Assisted Living) project, funded by the U.S. Department of Education [Edge 2001; WSPD 2005; Balk 2005].

Though both the VREAL project and the Virtual Supermarket are valuable examples of VLE for the hearing impaired, we believe that our application improves on the current state of the art in terms of: (a) high quality appearance of the virtual signers and signing motion; (b) complexity of real time interaction between 3D avatars and student; and (c) ease of communication between user and application. The advantages of our virtual learning environment will be discussed in the next sections.

3 Implementation
So far, the 3D learning environment consists of a candy store, a clock store, and two animated characters which respond to the motions and input provided by the user (see fig. 1 and 2).

Figure 1. Interior of candy store and ‘Bunny’ character (rendering)
The student views the application through a pair of light-weight LCD active stereoscopic glasses as it is projected onto an immersive, four screen FLEX [Fakespace Systems FLEX] display (see fig. 3). This display provides the user with images of the virtual environment projected to the front, side, and floor screens. The user wears an InterSense head tracker [InterSense IS-900 Precision Motion Tracker], which enables the application to determine the position and orientation of the user’s eyes; this information is used to re-draw the environment based on the user’s perspective, as the direction of the gaze changes. Gesture tracking and recognition is accomplished via a pair of Fakespace Lab’s Pinch Gloves [Fakespace Labs Pinch Glove] coupled with an Intersense wrist tracker. Interaction with the environment cues animated responses and sounds from the virtual objects and characters.

The interactive content is so far limited to K-1 math curriculum; we are currently programming math activities for grades 2 and 3. The majority of the interactive activities are based on the Mathsigner™ software [Adamo-Villani et al. 2004; Adamo-Villani et al. 2005] and have been redesigned and reprogrammed to function with the immersive application and the specialized input devices. The program teaches mathematics symbols and ASL signs for the numbers one to twenty, and mathematics skills for the four operations.

The application is not limited to display in the FLEX. It can be used on other systems such as a desktop computer, or a Portable Passive Stereoscopic System comprised of a screen and frame, a high-end laptop, two commodity projectors, a pair of polarizing filters, and a pair of inexpensive polarized glasses [Arangarasan et al. 2003] (this ‘immersive portable system’ will be used for the interactive demo in the ‘Incubator’).

3.1 System Development

Characters (and environments) were modeled and rigged in Maya 6.5 and animated using motion capture technology. Several software packages and libraries were used to convert the 3D data into a format compatible with the specialized hardware (see fig. 4). Graphics are rendered in the FLEX using OpenSceneGraph [OpenSceneGraph], an open source graphics development toolkit which works on top of OpenGL. Communication between the OpenSceneGraph libraries, the FLEX display system, and the input devices is implemented with the VRJuggler toolkit [VRJuggler]. Sound is configured to work using OpenAL and VRJuggler’s Sonix plug-in. OsgCal, an adaptor for the Cal3D character animation library, allows the application to use Cal3D’s functions to control skinned character animation within the OpenSceneGraph driven virtual environment.

All 3D models were exported into the four components necessary for use with Cal3D functions: .cmf (mesh file), .csf (skeleton file), .caf (animation file), and .crf (texture file). Once exported, the separate files were reassembled as a model node within the scene graph of the osg program using the osgCal libraries.

OsgCal functions are used to control the playback of the animation clips. When the program receives key input signals from the user, the osgCal startLoop and stopLoop functions cue the appropriate signing animations. When other character animations are required, such as walking motions and facial expressions, osgCal functions blend the various animation segments, thus providing a smooth transition between signing motions and other character behaviours. In this way, a variety of animations, including motion captured hand signs, facial expressions, general body movements, and locomotion patterns, can be exported from Maya as separate clips and blended and/or layered in real time to create a character that moves fluidly and realistically in response to the user’s input.

3.2 Gesture Control system

The gesture control system, comprised of a pair of pinch gloves and a wrist tracker, allows the user to: (1) grasp and release virtual objects; (2) input a limited number of ASL hand-shapes; and (3) navigate the virtual environment.

Each pinch glove consists of a flexible cloth glove with strips of conductive cloth sewn onto the end of each finger as well as the inside palm. When the user connects the tips of two fingers, or fingers and palm, the conductive cloth is joined and a signal is sent to the system allowing the program to determine which of the user’s fingers are touching. The InterSense IS-900 wrist tracker uses ultrasonic and inertial tracking to determine the position and orientation of the user’s hand within the 3D environment. For example, this method of gesture detection enables the user to grasp objects within reach by pinching the thumb and forefinger together. Tracking information enables the program to identify which object in the scene is closest to the user’s fingers when the
In this paper we have presented a new immersive virtual environment in which deaf children learn math concepts and ASL math terminology through interaction with 3D virtual signers and objects.

The application has been evaluated throughout its development by deaf adults, Purdue faculty and students knowledgeable in sign language and deaf related issues who have provided positive feedback on the readability of the signs and the effectiveness of the program. Full-scale evaluation of the application with children age K-3 will be carried out in Fall 2006 in collaboration with the Indiana School for the Deaf (ISD).

Even with a more affordable input device, the high cost of the system remains a limiting factor of all immersive VR applications. Presently, our program is targeted at school systems, not individual customers.

The possibility of health and safety issues associated with use of head mounted displays is a problem of all immersive applications designed for children with disabilities. In case of inability to wear a head mounted display, the application can be displayed on a standard computer monitor and navigation can be accomplished with a joystick.

Acknowledgements

This research is partially supported by the School of Technology at Purdue University (I3 grant - Proposal #00006585 - http://www2.tech.purdue.edu/cgt/I3/) and by the Envision Center for Data Perceptualization. We are grateful to all the signers who have participated in the evaluation of the signing animations, and to the Indiana School for the Deaf (ISD) which will provide the testing ground for a thorough assessment of the application in Fall 2006.
References


InterSense IS-900 Precision Motion Tracker. http://www.intersense.com/products/prec/is900/


Western PA School for the Deaf. Virtual Reality (VREAL) comes to WSPD. http://www.wpsd.org/technology/VReal03.html