QuadStack: An Efficient Representation and Direct Rendering of Layered Datasets

Alejandro Graciano, Antonio J. Rueda, Adam Pospíšil, Jiří Bittner, and Bedřich Benes, Senior Member, IEEE

Abstract—We introduce QuadStack, a novel algorithm for volumetric data compression and direct rendering. Our algorithm exploits the data redundancy often found in layered datasets which are common in science and engineering fields such as geology, biology, mechanical engineering, medicine, etc. QuadStack first compresses the volumetric data into vertical stacks which are then compressed into a quadtrees that identifies and represents the layered structures at the internal nodes. The associated data (color, material, density, etc.) and shape of these layer structures are decoupled and encoded independently, leading to high compression rates (4× to 54× of the original voxel model memory footprint in our experiments). We also introduce an algorithm for value retrieving from the QuadStack representation and we show that the access has logarithmic complexity. Because of the fast access, QuadStack is suitable for efficient data representation and direct rendering. We show that our GPU implementation performs comparably in speed with the state-of-the-art algorithms (18-79 MRays/s in our implementation), while maintaining a significantly smaller memory footprint.

Index Terms—Computer graphics, object hierarchies, graphics data structures and data types

1 INTRODUCTION

Geometric data often contain redundancies that can be represented in a compact way to save space. A compact representation usually requires a certain amount of work to convert the data to the original representation, but algorithms often exist that can access the original values, in an efficient way, directly. Various applications have different needs and these give rise to a wide spectrum of data representations. The focus of this paper is on discrete volumetric data that is usually represented in an uncomprssed form as a 3D grid of volumetric elements (voxels).

The key observation of our work is that many research and engineering fields produce layered volumetric data which have strong directional anisotropy and high coherency in a prevailing direction. An example is geology (Fig. 1 left), where geological strata are made up of layers of continuous material. Many biological materials such as skin or leaves are also layered, but on a much smaller scale. Even though certain volumetric materials are not composed of clearly visible layers, they include organized stacks of uniform material; an example is particles in materials such as stones, microstructures, or even atmospheric data with layers of air at different humidity, temperature, and velocity. Although existing algorithms can be applied to layered data and provide good compression, representation, and fast access, we argue that by exploiting their layered structure, we can achieve better results in both data storage and retrieval.

We introduce QuadStack, a novel algorithm for volumetric data representation of layered datasets. QuadStack uses a quadtree for data representation while efficiently encoding the layers in the tree. The layers are converted to stacks, and the algorithm decouples the voxel values from their height values. We also introduce an algorithm for value retrieval from the QuadStack representation and we show that the access requires $O(\log(n + m))$ time, where $n = w \times h$ for a voxel space with dimensions $w \times h \times d$ and $m$ is the maximum stack size. In practice, $m$ is small compared to $n$ in a layered model, so the method can be assumed to run in logarithmic time. Because of its fast access, QuadStack is suitable for efficient rendering of layered data and can be implemented on the GPU as we show in a raycasting implementation.

We apply our algorithm to real datasets from different domains. In particular, we show its performance on geological datasets [1], industrial models [2], microstructural data [3], and with a snapshot of a magnetic reconnection simulation [4]. We render these datasets by using QuadStack which has comparable performance to other state-of-art techniques, but has 66 percent to 99 percent less memory requirements compared to the uncompressed data. An example in Fig. 1 shows three layered data from various applications compressed and rendered by using QuadStack.

We claim the following contributions: 1) QuadStack, a novel data structure that arranges volumetric layered datasets into a set of heightfields, isolating them from the attribute values, and compressing them into a quadtree, 2) a fast method for the QuadStack construction based on string matching, and 3) a rendering algorithm that displays the compressed data directly.
2 PREVIOUS WORK

Here we review related methods for representing and visualizing general volumetric data followed by an overview of methods specific for heightfields and layered data.

The most common volumetric data representation is the use of regular grids [5], [6] that allow quick random access and modifications needed by many data processing algorithms. However, regular grids are often highly redundant and do not provide scalable data representation. The grids are compressed into Octrees [7], hierarchical grids [8], or collections of tetrahedra [9]. In general, these methods are able to focus on the details of representation into the corresponding data, but modifications can require recalculation of the compressed representations.

A specific class of volumetric representation is layered representation, which has been studied in the context of geological structures such as terrains and landscapes. An inspiration for our work is the layered data structure for terrain representation introduced by Benes and Forsbach [10], extended to enable interactive modeling of terrains, including simulations of natural processes such as erosion [11], and the evolution of snow covered mountains [12]. Peytavie et al. [13] used this representation for modeling and visualizing complex terrain, including features like arches or overhanging cliffs. Later, Löffler et al. [14] achieved realtime rendering using a LoD hierarchy. Both methods convert the layered data to a triangle mesh prior to the visualization, and only the surface is rendered. Also, based on this data structure, the recent work of Graciano et al. [15] introduced the Stack-Based Representation (SBR) that is a compact representation for a layered volumetric datasets. This work also introduced a GPU-based method for direct rendering of layered geological structures by using SBR. QuadStack, the method being introduced in the present work, goes further by proposing compression of stacks using a quadtree without compromising realtime visualization.

Volume data visualization is often conducted by using direct volume ray casting that provides a flexible approach to handle varying density of the data, implementing transfer functions, or focusing the visualization by clipping [16]. Amanatides and Woo [5] introduced a fast algorithm for traversing volumetric data encoded in a regular grid using a 3D-DDA algorithm. Levoy [8] extended the traversal to hierarchical representation. Danskin and Hanrahan [17] introduced several adaptive acceleration methods for volume ray tracing using homogeneity and opacity accumulation. Cohen and Sheffer [18] proposed proximity clouds to accelerate traversal of empty regions. Revelles et al. [7] developed an optimized Octree ray tracing using a fast recursive algorithm. Efficient skipping techniques for Octree traversal were proposed by Grimm et al. [19] and Lim and Shin [20]. Crassin et al. [21] used node and brick pools to optimize the ray traversal and data filtering using sparse voxel Octrees [22]. A detailed discussion of direct volume rendering techniques can be found in surveys [16], [23].

Kämpe et al. [24] encoded the geometry of high resolution volumetric models obtained using DAGs. These models are typically generated from high-resolution rasterization of surface representation into binary voxels representing either full or occupied model parts. Later, Dado et al. [25] and Dolonius et al. [26] proposed techniques for attaching attributes to geometry compressed using DAGs. Our method also decouples geometry, and attributes and encodes them separately. A notable difference in our method is that our representation primarily structures the data according to attributes (layers). This allows us to optimize direct rendering of the compressed data for transfer functions that cull many layers that are often used to study the layered datasets.

Guthe and Goesele [27] proposed a method using blockwise compression of general volumetric data and blockwise decomposition optimized for direct volume rendering in CUDA. Our method also compresses geometric information, but it also stores semantic information about the layers that can be used, for example, to render individual layers differently. We compare to this method in Section 7.

Volumetric data can be also visualized by converting to boundary representation and applying efficient ray tracing methods for B-reps such as kD-Trees [28] or BVHs [29], [30]. There are several powerful implementations for both CPU [31], [32] and GPU ray tracing [33]. Limited bandwidth and data access latency are two of the main limitations for GPU rendering. Cache efficient layouts [34] and compressed data representation [35], [36] mitigate both of these issues.

We focus on layered data that can be thought of as a general form of heightfields that are commonly used to represent terrains with a single layer of material [37], [38], [39], [40].

Early heightfield rendering used a 2D grid traversal with a DDA [41]. Later techniques often precomputed hierarchical representations [42], [43]. Henning and Stephenson [44] focused on accelerating ray tracing and local reconstruction.
for the ray at the intersection. An efficient GPU implementation of terrain ray casting was proposed by Dick et al. [45], and a hybrid rendering technique for terrains combining rasterization with ray casting was proposed by Ammann et al. [46]. Lux and Fröhlich [47] focused on out-of-core large terrains rendering. Acceleration of terrain rendering by skipping empty regions of space was addressed by Baboud et al. [48] and more recently by Lee et al. [49].

Scandolo et al. [50] used compressed hierarchical representation to encode high resolution shadow maps, which are similar to heightfield compression. Their method maintains accurate shadows by encoding depths with values within limits provided by two consecutive depth layers. For other applications, such as representing and rendering general layered models, the method only provides a lossy compression of individual layers and is optimized for lookups using point queries instead of ray queries needed for direct visualization.

A number of other efficient techniques for multi-resolution heightfield representations and rendering have been surveyed by Pajarola and Gobbetti [51].

Our method builds on previous work by combining the layered representation of general volumetric data with hierarchical representation using quadtree s and a collection of heightfields. We hierarchically encode the volume into regions that have constant layer topology for which simple compressed heightfield representation can be used. This representation achieves high compression rates while still allowing efficient data retrieval. Thus, the method reduces memory usage as well as the bandwidth and latency when directly rendering the compressed representation.

3 Method Overview

Datasets are often composed of horizontal layers of identical values of a certain material or physical property that we refer to as attributes. The approach of our method is in representing the layers as run-length encoded vertical stacks [10] that are encoded further into a horizontal quadtree. In this way, a QuadStack is an efficient data structure for layered volumetric data that decouples the attribute data (layer attribute values) from the geometric data (layer heights).

Without a loss of generality, we assume that the direction of the layers is known, and that the data is oriented so layers are parallel to the (horizontal) direction xy. Although the height of each layer may vary by location, the vertical sequence (the order) of the layer attributes is spatially coherent as can be seen in Fig. 2 on the left. The height of the layers may vary between two vertical columns, but their order, often, will not change. A common change in real-world data sets is that one layer disappears or a new one is introduced.

The input volumetric data V (Fig. 2) with dimensions \( w \times h \times d \) is first converted to a set of stacks \( S \), where the stack \( S_{x,y} \in S \) represent the columns of voxels \( V_{x,y} \) encoded as a sequence of intervals \( i_1, i_2, ..., i_n \). Each interval consists of voxels with the same attribute value. The conversion to stacks is depicted as the first step of the construction in Fig. 2.

A detailed representation of a layered volumetric dataset as stacks is shown in Fig. 3 and explained in Section 4.

In the second step, a region quadtree organizes \( S \) into quadrants of stacks with the same sequence of attribute values, referred to as groups of stacks, or simply as gstacks. A gstack \( G \) encodes the stacks in the quadrant \( [x_{min}, y_{min}, x_{max}, y_{max}] \) in a compact manner, and is defined as a sequence of \( n \) intervals \( i_1, i_2, ..., i_n \). The attributes \( a_1, a_2, ..., a_n \) of the intervals of \( G \) are common to all the stacks in the quadrant: \( S_{x,y} \in S \) where \( x_{min} \leq x \leq x_{max} \) and \( y_{min} \leq y \leq y_{max} \). A quadtree of gstacks is denoted as QuadStack (see Fig. 2 and Section 5).

The QuadStack provides a lossless compression of the input data. It can be easily converted back to a voxel-based representation by point sampling (see Fig. 2 right). A similar sampling procedure can be used to directly render data represented in QuadStack by using a modified ray traversal algorithm for quadtree (Section 6).

4 Stack-Based Representation

Given a voxel grid \( V \) with resolution \( w \times h \times d \), each voxel \( v_{x,y,z} \in V \) stores one or more attributes, such as color, material, or density, that depend on the application. Layers are the maximal sets of connected voxels with a constant value for a given attribute.

The Stack-Based Representation (SBR) of \( V \) (see Fig. 3) is its decomposition into a set \( S \) of vertical stacks, where each stack \( S_{x,y} \in S \) comprises the space defined by the column of voxels at position \( xy \):

\[
S_{x,y} \cong V_{x,y} = \bigcup_{i=1}^{d} v_{x,y,i}.
\]

A stack is compacted as a run-length encoding of voxels with the same value for the attribute. Therefore, the stack \( S_{x,y} \) is a sequence of intervals \( i_1, i_2, ..., i_n \) along the z axis where \( i_k \) is a tuple \( i_k = < a_k, h_k > \) that represents the space comprised by a range of voxels of the column \( V_{x,y} \) with identical attribute value \( a_k \):

\[
i_k \cong \bigcup_{i=1}^{h_k} v_{x,y,i}.
\]
If \( k = 1 \) then \( h_{k-1} \) is assumed to be 0. The intervals are sorted by height in ascending order: \( h_k < h_{k+1} \) for any given \( k \) such that \( 1 \leq k \leq n \).

The complexity of the SBR construction is \( O(n) \), where \( n = w \times h \times d \) is the number of voxels, because each voxel needs to be processed exactly once. The SBR construction is embarrassingly parallel, because the stack construction does not require information about neighboring stacks.

5 THE QUADSTACK DATA STRUCTURE

A simple approach to compressing SBR data would be to use a hierarchical data structure such as a quadtree that would efficiently encode the neighboring stacks with the same sequence of intervals, i.e., stacks that have identical attribute values and heights. However, variations in the interval heights are common and would lead to low compression rates due to the high number of tree subdivisions.

Our observation is that while stacks differ significantly in their height values, their attribute values do not change very often between neighboring stacks. This change happens only when a layer disappears, or when a new layer appears, as can be seen in the left image in Fig. 2. Therefore our approach is to pack groups of neighbouring stacks with an identical sequences of attribute values into a single structure denoted as a group of stacks or gstack.

5.1 Group of Stacks - Gstacks

Given the decomposition of volume \( V \) into stacks \( S \), a gstack \( G \) represents a rectangular region of \( S \) with the same number of intervals \( n \) and identical sequence of attribute values \( a_1, a_2, \ldots, a_n \). More specifically, \( G \) represents the stacks \( S_{x,y} \) of a rectangle \([x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}}]\) of \( S \), where \( 1 \leq x_{\text{min}} \leq x_{\text{max}} \leq w \) and \( 1 \leq y_{\text{min}} \leq y_{\text{max}} \leq h \). Since the attribute information of the stacks \( S_{x,y} \) is identical, \( G \) can be encoded in a compact way as a sequence of intervals \( i_1, i_2, \ldots, i_n \). Each interval \( i_k = \langle a_k, H_k \rangle \) contains the attribute value \( a_k \), common to all the intervals \( i_k \) of \( S_{x,y} \), and a heightfield \( H_k \) with dimensions \((x_{\text{max}} - x_{\text{min}} + 1) \times (y_{\text{max}} - y_{\text{min}} + 1)\) that stores the heights of these intervals. More specifically, the height \( h_k \) of \( S_{x,y} \) is mapped to the height \( h_k - y_{\text{min}} \) of \( H_k \). The intervals and the attribute values are consistently ordered for all stacks \( S_{x,y} \) therefore the heightfields \( H_k \) never intersect i.e., given \( h_{i,j,k} \in H_k \) and \( h_{i,j,k+1} \in H_{k+1} \), where \( 1 \leq k \leq n \), the condition \( h_{i,j,k} < h_{i,j,k+1} \) is always met.

A gstack is simple and space-efficient encoding for a group of stacks with identical attribute information. Although only attribute information is compressed, the geometry information is stored as a set of non-intersecting heightfields that can also be compressed by using any existing heightfield encoding method.

Gstacks are built during the construction of a QuadStack that combines the spatial decomposition of a quadtree with the compact representation for groups of similar stacks given by gstacks.

5.2 Group of Stacks Hierarchies

A QuadStack represents the stacks as a hierarchy of gstacks. It divides the volume in the direction of \( xy \) recursively until a quadrant can be represented by a gstack. These quadrants are not guaranteed to be squared, or a power of two, since there are no restrictions on the dimensions of the volume.

A QuadStack stores information, not only in leaf nodes, but also in internal nodes, which further improves the
Fig. 5. Details of the QuadStack construction: Initial construction as a quadtree encoding groups of stacks with the same sequence of attributes (a), merging gstacks in nodes $n_1$ and $n_2$ into a gstack with common intervals and $*$-intervals (b), propagation of the new gstack to the parent node $n_0$, restructuring heightfields (c) and optimization, deleting $*$-intervals in nodes $n_1$ and $n_2$ associated to the intervals propagated to the parent node (d).

Fig. 6. Finding a common mapping for two gstacks that maximizes the number of terminal intervals.

standard quadtree construction of the stacks by using the criterion of same attribute sequence. This criterion ensures that the blocks of stacks at each leaf node can be encoded as a gstack, and the resulting data structure is already a QuadStack. Fig. 4 illustrates the resulting QuadStack.

Although the first step generates a more compact representation for the volumetric model than an SBR, layers of common attributes lead to duplicate intervals in many leaf nodes, as shown by the blue, yellow, and green attributes on the left part of Fig. 4. The second step extracts and merges these duplicate intervals in ancestor nodes. It proceeds from the bottom-up by propagating to a node every interval common to all its children (i.e., having the same attribute value). We map the attribute values of the intervals of the four gstacks in the children to a common sequence of attribute values, using * to group non-matching attributes (Fig. 6).

We are interested in mapping with the highest number of terminal intervals. The search space can be very large and our problem is related to finding common motifs with gaps, with applications in text mining and the analysis of DNA sequences. Many solutions have been proposed [52], [53], [54] that assume certain restrictions (e.g., motif size, maximum gap size, etc.) and require an exact match of the motifs, or accepting a certain degree of similarity.

However, our sequences are rather short and we propose a brute-force solution for this problem (Algorithm 1). The input is two gstacks and the output is two gstacks with a matching sequence of interval attribute values. The algorithm takes every possible pair of intervals from the first and second gstack and tests if their attribute values match; if a matching pair $i_{1,s}, i_{2,t}$ is found, the intervals are added to their corresponding result gstack and the function calls itself with the remaining intervals $i_{1,s+1}, \ldots, i_{1,m}$ and $i_{2,t+1}, \ldots, i_{2,n}$. If $i_{1,s}$ and $i_{2,t}$ are not in the first positions of their gstacks (i.e., $s > 0$ and $t > 0$), the predecessors intervals $i_{1,1}, \ldots, i_{1,s-1}$ and $i_{2,1}, \ldots, i_{2,t-1}$ are grouped into two $*$-intervals associated to the heightfields of the top intervals $i_{1,1}$ and $i_{2,1}$. The number of terminal intervals of the solution obtained are computed, and finally the best solution is returned. Generalizing this solution to the four children of a QuadStack node is straightforward. The theoretical complexity of this algorithm is $O((m+n)^3)$ for four stacks with $m$ intervals, but it performs much better in practice with the heuristics described in Section 5.5.

If the derived gstacks have at least one terminal interval, they are merged into a single gstack at the parent node (Figs. 5b and 5c). The heightfields of the newly created gstack are generated by packing the four heightfields of the

5.3 QuadStack Construction

The QuadStack is constructed in two steps: a top-down subdivision, and a bottom-up merging. The subdivision step is a compression. An internal node can contain a gstack grouping intervals common to all its descendants. Since these intervals are not necessarily consecutive, the gaps between them, corresponding to one or more intervals that are stored elsewhere (i.e., in a descendant or ancestor node), are represented with a new type of interval called wildcard interval or $*$-interval. This enables a flexible form of a gstack that combines intervals (hereinafter referred to as terminal intervals) with areas lacking information on this level of the QuadStack. These intervals, in many cases, correspond to terminal intervals. The search space can be very large and our problem is related to finding common motifs with gaps, with applications in text mining and the analysis of DNA sequences. Many solutions have been proposed [52], [53], [54] that assume certain restrictions (e.g., motif size, maximum gap size, etc.) and require an exact match of the motifs, or accepting a certain degree of similarity.

However, our sequences are rather short and we propose a brute-force solution for this problem (Algorithm 1). The input is two gstacks and the output is two gstacks with a matching sequence of interval attribute values. The algorithm takes every possible pair of intervals from the first and second gstack and tests if their attribute values match; if a matching pair $i_{1,s}, i_{2,t}$ is found, the intervals are added to their corresponding result gstack and the function calls itself with the remaining intervals $i_{1,s+1}, \ldots, i_{1,m}$ and $i_{2,t+1}, \ldots, i_{2,n}$. If $i_{1,s}$ and $i_{2,t}$ are not in the first positions of their gstacks (i.e., $s > 0$ and $t > 0$), the predecessors intervals $i_{1,1}, \ldots, i_{1,s-1}$ and $i_{2,1}, \ldots, i_{2,t-1}$ are grouped into two $*$-intervals associated to the heightfields of the top intervals $i_{1,1}$ and $i_{2,1}$. The number of terminal intervals of the solution obtained are computed, and finally the best solution is returned. Generalizing this solution to the four children of a QuadStack node is straightforward. The theoretical complexity of this algorithm is $O((m+n)^3)$ for four stacks with $m$ intervals, but it performs much better in practice with the heuristics described in Section 5.5.

If the derived gstacks have at least one terminal interval, they are merged into a single gstack at the parent node (Figs. 5b and 5c). The heightfields of the newly created gstack are generated by packing the four heightfields of the
intervals of the derived gstacks. Finally the derived gstacks are deleted, and every propagated interval is converted to an ∗-interval at the children gstacks, grouping adjacent intervals if necessary (Fig. 5c). If a gstack ends up as a single ∗-interval, it can be safely deleted from the node since it does not provide any information.

Algorithm 1. Algorithm matchGS

Input: gstacks \( G_1 = \{i_1, \ldots, i_n\} \) and \( G_2 = \{i_{2,1}, \ldots, i_{2,m}\} \). Interval \( i_{1,k} = < a_{1,k}, H_{1,k} > \) where \( a_{1,k} \) and \( H_{1,k} \) are its attribute value and heightfield value respectively.

Output: gstacks \( G'_1 \) and \( G'_2 \) with the same sequence of attribute values.

\[
\begin{align*}
\text{if} \quad & G_1 \neq \emptyset \quad \text{and} \quad G_2 \neq \emptyset \\
& G'_1 = \{ < *, H_{1,1} > \} \cup \{ i_{1,1} \} \cup G'_1 \\
& G'_2 = \{ < *, H_{2,1} > \} \cup \{ i_{2,1} \} \cup G'_2 \\
\text{else} \quad & G'_1 = \emptyset \\
& G'_2 = \emptyset \\
\text{set} \quad & \text{best} = 0 \\
\text{foreach} \quad & \text{interval} i_{1,x} \text{ from } G'_1 \text{ do} \\
& \text{foreach} \quad & \text{interval} i_{2,y} \text{ from } G'_2 \text{ do} \\
& & \text{if} \quad & a_{1,x} = a_{2,y} \quad \text{and} \quad a_{1,x} \neq * \\
& & & \text{and} \quad & (s > 1 \text{ xor } t > 1) \quad \text{and} \quad (s < n \text{ xor } t < n) \quad \text{then} \\
& & & & \quad \text{G}'_1, G'_2 \leftarrow \text{matchGS}(i_{1,x}, i_{1,y}) \} \\
& & & & \{ i_{2,x}, i_{2,y} \}) \\
& & & & \quad \text{sc} \leftarrow \text{numTerminalIntervals}(G'_1) \\
& & & & \quad \text{if} \quad & \text{sc} > \text{sc}_\text{best} \quad \text{then} \\
& & & & & \quad \text{sc}_\text{best} \leftarrow \text{sc} \\
& & & & & \quad \text{if} \quad & s > 0 \quad \text{then} \\
& & & & & & \quad \text{G}'_1 \leftarrow \{ < *, H_{1,1} > \} \cup \{ i_{1,1} \} \cup G'_1 \\
& & & & & & \quad \text{G}'_2 \leftarrow \{ < *, H_{2,1} > \} \cup \{ i_{2,1} \} \cup G'_2 \\
& & & & & \text{else} \\
& & & & & \quad \text{G}'_1 \leftarrow \{ i_{1,1} \} \cup G'_1 \\
& & & & & \quad \text{G}'_2 \leftarrow \{ i_{2,1} \} \cup G'_2 \\
& & \text{end} \\
& \text{return} \quad & G'_1, G'_2
\end{align*}
\]

The time complexity is \( O(n \log n) \) for the initial quadtree construction and \( O((n \times (m!))^3) \) for the interval propagation phase, where \( n \) is the number of stacks in the SBR \((n = w \times h)\) and \( m \) the maximum number of intervals in a gstack.

5.4 Heightfield Compression

QuadStack implements a compact encoding of the ordered sequence of attributes, but does not deal with the compression of the interval heights. In our approach, attribute and heightfield representation are decoupled, therefore heightfields can be stored in a raw form, or compressed by any existing method such as the algorithm of [55].

A simple delta encoding provides good results, since height values usually vary progressively. However, the main problem is that the access to any data requires decompressing the whole dataset which limits the practical use in applications where efficient queries or traversals are required (e.g., realtime visualization).

We propose a method that provides a trade-off between compression and access time, inspired by the work of Andujar [56]. This method partitions the heightfield into equal-sized blocks and compresses the values in each block independently. Consider a heightfield \( H \) partitioned into \( w \times h \) blocks with the same dimensions \( m \times n \). For each block \( B_{i,j} \in H \) the lower height value is taken as the base value, encoding the \( m \times n \) elements in the block as differences from this base value. Using blocks of a relatively small size makes these differences close to zero, allowing them to be encoded with a reduced number of fixed bits. This enables random access to a particular location with only two reads: a first one to a header that comprises the base value of the block and the number of bits required to encode each height difference, and a second one to the actual difference located at the bit field. Other predictors for a value in a block are possible: for instance it can be encoded as the difference with respect to the bilinear interpolation of the height values at the four corners of the block.

5.5 Optimizations

The QuadStack construction algorithm described in Section 5.3 generates a compact representation of the attributes of the model. This can be further improved if ∗-intervals that do not provide useful information for sampling operations are removed. Good candidates are the ∗-intervals representing information that can be found elsewhere in an ancestor node, such as the top ∗-intervals in the gstacks of nodes \( n_1 \) and \( n_2 \) in Fig. 5c. The information represented by these intervals is included in the blue interval in the gstack of the node \( n_0 \). These intervals are never reached during sampling (Section 6), and can be discarded during the bottom-up phase of the QuadStack construction algorithm. When an interval is propagated to an ancestor (Figs. 5b and 5c), it is completely removed from the initial gstack, instead of being converted to an ∗-interval. Note that the result is no longer a gstack, since it represents only a subset of intervals instead of the full range of the stacks. We refer to this as a partial gstack.

Under the described conditions, gstacks can be converted into partial gstacks reducing the QuadStack space requirements without affecting its performance in sampling or rendering operations. Fig. 5d shows the resulting QuadStack after this optimization.

An optimal match of the gstacks during the bottom-up phase is essential for a good attribute compression. Algorithm 1 finds the optimal matching, although its time complexity is high. We use two efficient heuristics to reduce its computation time.

First, the exploration of a new solution can be avoided if the minimum of the lengths of the two lists of explored intervals is less than the best score so far, since a better score cannot be found. Notice that the score of a solution is the number of terminal intervals, so at least two lists with a higher number of intervals are required to be able to find a better solution.

Second, we store the optimal matching found for four given lists of intervals, since certain combinations are explored repeatedly. For this purpose we use a simple map with a key computed from the length of the four lists of intervals. This improvement reduces the time requirements of the algorithm to \( O(m^5) \). To illustrate this, in the computer used for our experiments (Section 7) matching 4 stacks with 30 intervals is solved in less than 26 ms compared to 764 ms without optimizations (30× faster).
QuadStack is carried out by recursive traversing of node raycast can be rendered by ray (top) and k at the root node. This ãr level first, is found. If it is a ter-
ing stack insideQuadrant p C > > final node and attribute value sampled at ¼/C3 6 representation. The first is point sampling that is cru-
g stack Ñ if p. > 0 then foreach interval ik = < ak, Hk > from gstack G in n do if hpy, z ≥ p then a then n k break end if r = * then C ← getChildren(n) if C ³ ñ then Given C = {c0, c1, c2, c3, c4} if insideQuadrant(c0, p) then a, n ← sampleQS(c0, p) else if insideQuadrant(c1, p) then a, n ← sampleQS(c1, p) else if insideQuadrant(c2, p) then a, n ← sampleQS(c2, p) elseif insideQuadrant(c3, p) then a, n ← sampleQS(c3, p) return a, n

6 QuadStack Sampling and Direct Rendering

We discuss two techniques for retrieving data from QuadStack representation. The first is point sampling that is crucial for compression/decompression applications, the second technique uses ray casting and enables direct rendering of QuadStack data.

Algorithm 2. Function sampleQS

Input: node n to be sampled; sampling point p. Output: final node and attribute value sampled at p.
a ← null
n ← null
if p. > 0 then foreach interval ik = < ak, Hk > from gstack G in n do if hpy, z ≥ p then a ← ak n ← n break end if r = * then C ← getChildren(n) if C ³ ñ then Given C = {c0, c1, c2, c3, c4} if insideQuadrant(c0, p) then a, n ← sampleQS(c0, p) else if insideQuadrant(c1, p) then a, n ← sampleQS(c1, p) else if insideQuadrant(c2, p) then a, n ← sampleQS(c2, p) elseif insideQuadrant(c3, p) then a, n ← sampleQS(c3, p) return a, n

6.1 Point Sampling for Selective Decompression

The QuadStack decompression can be performed selectively by using point sampling of the QuadStack representation. Algorithm 2 shows the regular structure of a point sampling procedure in a hierarchical data structure adapted to a QuadStack. Querying a point p is carried out by recursive traversing of the quadtree data structure. First, an inclusion test between p and the bounding box of the data is computed, if the test is successful, the query can start by sampling the root node. In order to sample a node, the heightfield Hk of each interval in the gstack must be sampled at the xy position of p, comparing its height with the z coordinate. The iteration stops when the lowest interval whose height is above z is found. If it is a terminal interval, regardless of whether a leaf node is reached or not, the attribute is returned. When an interval is found, the traversal continues in the successive nodes.

The overall time complexity is O(log n + m) since, in the worst case, it is necessary to reach a leaf of the tree to retrieve the interval, checking at most m intervals during the traversal. Point sampling can also be easily generalized to decompress an arbitrary rectangular region or box of the model into stacks, or further into voxel data.

6.2 Ray Casting for Direct Volume Rendering

GPU-accelerated ray casting is currently the most common approach for the visualization of volumetric data providing a good trade-off between simplicity, quality, and speed. Models represented by QuadStack can be rendered by ray casting without using an intermediate representation (e.g., a SBR or a 3D grid of voxels). Similar to other hierarchical data structures QuadStack allows an efficient implementation of ray casting, which is solved at the gstack level first, then at the interval level, and finally at the heightfield level, as depicted in Fig. 7.

The rendering procedure starts by computing the intersection between the ray and the gstack at the root node. This can be computed efficiently, considering that a gstack defines a cuboid that spans the entire z dimension of the volumetric space. Then, the first intersection with an interval ik of the gstack is calculated. This involves computing the intersection of the ray with its four lateral faces and two bounding heightfields: Hk (top) and Hk−1 (bottom). If the interval ik is terminal, its contribution to the accumulated color and opacity is computed as the integral of the transfer function for the attribute ak between the entry and exit points of the ray, together with an opacity correction due to adaptive sampling [57]. The ray processing stops if the opacity of the color is close to one. If ik is an interval, a recursive call is made to compute the contribution by the ray traversal of the gstacks in the four descendant nodes. After ik has been processed, the traversal continues with a new interval until the ray exits the gstack. If the gstack is at the root node the QuadStack sampling is completed. In general, it implies the return of a recursive call and further processing of the gstack at the parent node.

The most time-consuming step in the QuadStack raycasting is the ray-heightfield intersection computation. In order to accelerate this step, each heightfield is mipmapped storing the min-max instead of averaging values [58]. Each mipmap level defines a bounding geometry for the heightfield with the shape of a set of cuboids with the same dimensions in the xy plane. The highest mipmap level represents the coarsest approximation (i.e., a bounding box) and the level zero represents the finest (i.e., the heightfield itself). To test if a ray intersects the heightfield associated with a given interval of a gstack, first the intersection with the bounding cuboid defined by the highest mipmap level is computed. If the cuboid is hit, the intersection computation continues with the four contained cuboids in the preceding mipmap level, until the ray passes by or hits the heightfield at level zero. The extra memory required (66 percent for each heightfield)
can be reduced by using heightfield compression explained in Section 5.4, resulting in a good trade-off between rendering time and memory footprint.

7 IMPLEMENTATION AND RESULTS

We have implemented our algorithm in C++ with support of OpenGL and GLSL. Results were generated on a desktop computer with an Intel i7-4790 quad-core processor running at 3.6 GHz, 16 GB of RAM, and a NVIDIA GTX 970 GPU. Below, we first discuss details of the GPU implementation and then present results and comparisons.

7.1 QuadStack Encoding in the GPU Memory

The key for an efficient raycasting is a careful encoding of the model representation in the GPU memory. Our memory layout for QuadStack consists of three buffers: a tree buffer that encodes the QuadStack structure, a lookup table (LUT) for the set of gstacks, and a heightfield buffer that packs the heightfields associated with each gstack (Fig. 8).

The structure of the tree buffer is inspired by [60], where each tree node keeps either the data itself (leaf), or an index to its descendants (otherwise). Contrary to the previous work, an inner node in our structure also contains the corresponding gstack. Therefore, a node in the tree buffer holds indices of its children and an extra pointer to the gstack LUT indicating the beginning of the sequence of intervals and its size.

The gstack LUT comprises every gstack in a consecutive manner. Each element of this buffer defines a gstack interval formed by its attribute and a pointer to the beginning of its corresponding heightfield in the heightfield buffer.

Heightfields are compressed by using the approach described in Section 5.4. The detailed structure of the heightfield buffer is shown in Fig. 9. A header contains a field with the number of blocks into which the heightfield is divided, followed by a sequence of block descriptors that comprises the base value, the number of bits required for encoding the height differences, and the address of the height data. Next, the encoded height data for each block is stored. Morton encoding layout both for block metadata and height differences provides the required spatial coherence when accessing data. As shown in Fig. 8, an index indicating the level of the QuadStack to which the heightfield is associated (base level) has been added. When a gstack in a descendant node refers to a specific quadrant of this heightfield, the use of this index avoids adding extra information at the LUT buffer: the actual quadrant can be quickly determined from the base level of the heightfield and the level queried.

7.2 Volumetric Data Compression

We evaluated the QuadStack to perform lossless compression of the input volumetric data. We used five datasets for the tests that exhibit strong to medium layered structure: two terrain models with several layers of different geological content (Terrain1, Terrain2) from [1], microstructure of a Li-Pol battery (Battery) [3], a part of an industrial model of a wing of a plane (Wing) [2], and a magnetic reconnection simulation (Magnetic). We wanted to cover a wide spectrum of applications and a wide variety of layers and structures.

The measured results are shown in Table 1. Interestingly, models with comparable maximum number of layers (e.g., Terrain1 and Terrain2) lead to different compression ratios, regardless of the method used. This is caused by their structural differences leading to variability of the average number of layers per stack (that can be far from the maximum), and the sequences of layers of neighboring stacks. We leave the study of these factors and eventually the development of a measure that could show the compression potential of a layered model for future work (Section 8).

The memory for the input volume data, using 8 bits to encode each voxel, ranges from 53 MB to 163 MB. The voxel representation uses 8 bits per voxel [bpv]. QuadStack requires from 3 MB to 19 MB of memory for our datasets, demanding less than 2 bpv for all the scenarios. The achieved compression ratio is between $4 \times$ and $54 \times$. It also obtained a more compact representation of the volumetric data than the SBR, except for the Terrain 1 dataset in which SBR achieved the highest compression ratio.

Table 1 also shows the construction time and memory consumption of a standard octree-based volume representation. Further, we report results of the publicly available implementation of the GigaVoxels algorithm [59] that uses an octree enhanced by a brick pool for optimized rendering.

![Fig. 8. a) Rendering procedure overview and GPU memory structure for the direct rendering of a QuadStack represented. b) Its heightfield arrangement. c) Indices in the heightfield buffer indicate the QuadStack level to which the heightfield belongs.](image1)

![Fig. 9. Heightfield compression scheme.](image2)
of very large volumes (we used the default settings with brick size 8³). QuadStack provided more compact storage than both Octree and GigaVoxels. The storage requirements and construction times for GigaVoxels are higher due to preallocated fixed size buffers for nodes and bricks and the associated brick pool construction overhead [59]. However, the brick pool used by the GigaVoxels enables efficient filtering and out-of-core rendering that are currently not supported by our implementation of QuadStack.

This study is completed with the recent volume compression method of Guthe and Goesele (GG) [27], which is inspired by 2D texture compression techniques. Volume is structured into 4×C2×4 blocks that are independently compressed using the approach that best suits the data in the particular block (constant, difference to the maximum/minimum, gradient or Haar wavelet). Overall, QuadStack and GG are comparable in terms of compression performance for the dataset in our experiments. They provided the same compression ratio for Magnetic (5 percent), GG achieved a better compression for Terrain 1 (8 versus 15 percent) and Battery (19 versus 25 percent), and finally, QuadStack outperformed GG with Terrain 2 (5 versus 6 percent) and the Wing model (2 versus 6 percent). Beyond these results, GG compresses data without providing any particular insight into it. In contrast, our method holds topological information of the existing layers, enabling operations such as analysis of the structure of the model, fast generation of a triangle mesh from a given layer, direct extraction or modification of the transparency of a layer during rendering, etc.

A breakdown of the memory budget for QuadStack is shown in Table 2. Most of the memory is used by the quadtree and attribute information. The min-max mipmaps require slightly less memory and the compressed height-fields require the least amount of memory. In addition, the amount of memory required to encode raw heightfields is included. The memory required to store the min-max mipmaps is optional; min-max mipmaps act only as rendering acceleration data structure and they are not required for a compression only application.

### 7.3 Direct Volume Visualization

The second aspect that we have examined is the performance of the GPU-based direct visualization of QuadStack by using the five datasets from Section 7.2. As reference, we used two visualization backends implemented in the ParaView software: the GPU accelerated rendering using VTK, and CPU based rendering using OSPRay. For all scenes we used five representative views for which we measured the rendering times that were converted to performance numbers expressed in milliseconds required to generate a frame.
TABLE 2
Breakdown of the QuadStack Memory Requirements

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Attributes Heightfields [MB raw/compressed (%)]</th>
<th>Mipmaps [MB (%)]</th>
<th>Total [MB (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain 1</td>
<td>11.4 (59%) 5.9/3.3 (17%)</td>
<td>4.7 (24%)</td>
<td>19.4 (100%)</td>
</tr>
<tr>
<td>Terrain 2</td>
<td>2.9 (62%) 2.3/1.0 (21%)</td>
<td>0.8 (17%)</td>
<td>4.7 (100%)</td>
</tr>
<tr>
<td>Battery</td>
<td>6.4 (49%) 8.3/4.6 (36%)</td>
<td>1.9 (15%)</td>
<td>13.1 (100%)</td>
</tr>
<tr>
<td>Wing</td>
<td>1.3 (52%) 3.1/0.8 (32%)</td>
<td>0.4 (16%)</td>
<td>2.5 (100%)</td>
</tr>
<tr>
<td>Magnetic</td>
<td>3.4 (58%) 4.6/1.5 (25%)</td>
<td>1.0 (17%)</td>
<td>5.9 (100%)</td>
</tr>
</tbody>
</table>

The columns represent memory needed for representing the quadtree and attributes, raw and compressed heightfields, and min-max mipmaps.

QuadStack compresses the layers into stacks and then compresses the stacks into a quadtree while considering the representing patterns among neighboring layers. We also introduce a novel algorithm for direct rendering of the compressed data and we show its GPU implementation that performs comparably to state-of-the-art algorithms for direct volume rendering, but instead of using full data it works directly with the compressed volumes.

Our method has several specific advantages that are possible for layered models. It allows for the extraction of an individual layer during rendering and its conversion to a triangle mesh on-the-fly if required. Layers can also be individually hidden/visible, which is relevant in many practical fields such as geology. We can also render layers that include water by using transparency or even refraction effects. Finally, it supports lossless and lossy compression (within the limit of numerical representation).

While the field of data compression and rendering has been active for many years, there are still many open problems that may have been enabled by our algorithm. Our algorithm could be extended to time-varying datasets that are common in fluid simulations or simulations of eroded terrains. Also, many datasets are cylindrical and it would be an interesting extension to apply QuadStack to a non-linear domain. We have not fully explored the internal structure of the layers and its relation to the compression factor. It would be possible to first sample and rotate the input data to detect a direction that would provide good compression factor. The construction algorithm uses rather simple matching and a possible extension would improve its efficiency for scenes with many layers. We would also like to study the possibility of using DAGs [24], [25], [26] for compressing the layer attributes as well as the layer geometry for high resolution data sets.

8 CONCLUSION AND FUTURE WORK

We introduced QuadStack, a novel algorithm for layered data compression and direct rendering. The key inspiration for our work is the common output of many science and engineering applications and measurements that produce data with strong directional anisotropy in the form of layers.


Alejandro Graciano received the PhD degree in computer science from the University of Jaén, Spain, in 2019. His current research interests include topics in computer graphics such as geoscientific visualization, GPU programming and its applications as well as geographic information systems.

Antonio J. Rueda is currently an associate professor of Computer Science at the Escuela Politécnica Superior, University of Jaén, Spain. His main research interests include computer graphics, focusing on design of geometric algorithms, processing of 3D laser scanned data or GPU computing. He has presented his work in more than 40 papers and communications in journals and conferences.

Adam Pospišil received the BS degree from the Czech Technical University, Prague. He is currently a research assistant at the Czech Technical University, in Prague. His main area of research is in spatial data structures, and global illumination.

Jiří Bittner received the PhD degree from the Czech Technical University in Prague. He is currently an associate professor of Computer Science at the Czech Technical University, in Prague. His research interests include visibility computations, real-time rendering, spatial data structures, and global illumination.

Bedřich Benes (Senior Member, IEEE) is currently a George McNelly professor of Technology and professor of Computer Science at Purdue University. His area of research interests include procedural and inverse procedural modeling and simulation of natural phenomena and he has published more than 140 research papers in the field.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.