
Proceduralization for Editing 3D Architectural Models

İlke Demir
Purdue University
West Lafayette, IN
idemir@purdue.edu

Daniel G. Aliaga
Purdue University
West Lafayette, IN
aliaga@purdue.edu

Bedrich Benes
Purdue University
West Lafayette, IN
bbenes@purdue.edu

Figure 1. Overview. Original input model (left), versus new buildings synthesized by editing the extracted procedural representation.

Abstract

Inverse procedural modeling discovers a procedural rep-
resentation of an existing geometric model and the discov-
ered procedural model then supports synthesizing new sim-
ilar models. We introduce an automatic approach that gen-
erates a compact, efficient, and re-usable procedural rep-
resentation of a polygonal 3D architectural model. This
representation is then used for structure-aware editing and
synthesis of new geometric models that resemble the orig-
inal. Our framework captures the pattern hierarchy of the
input model into a split tree data representation. A context-
free split grammar, supporting a hierarchical nesting of pro-
cedural rules, is extracted from the tree, which establishes
the base of our interactive procedural editing engine. We
show the application of our approach to a variety of archi-
tectural structures obtained by procedurally editing web-
sourced models. The grammar generation takes a few min-
utes even for the most complex input and synthesis is fully
interactive for buildings composed of up to 200k polygons.

1. Introduction
Architectural models are important in computer graph-

ics, virtual environments, and urban planning which puts a

high demand on obtaining and editing those models. While

procedural modeling has been shown to provide compelling

architectural structures, creating detailed and realistic build-

ings needs time and extensive coding. In contrast, inverse

procedural modeling converts existing building models into

an easy to synthesize procedural form and allows for quick

synthesis of visually similar buildings. In this paper, we in-

troduce a novel inverse procedural modeling approach for

architectural models that enables the intuitive synthesis of

novel 3D architectural models.

Previous inverse procedural modeling work of architec-

tural structures has focused on facades, point clouds, build-

ings, or cities. Facade methods (e.g., [34, 35]) provide com-

pelling results but do not readily extend to 3D buildings.

Building point cloud approaches (e.g., [3, 6, 12, 29]) fo-

cus on segmentation and on symmetry analysis for finding

repetitions. Methods working with building models assume

having both a segmented and a labeled model with struc-

tural constraints (e.g., [15]), multiple exemplars of the same

building style in different configurations (e.g., [27]), seg-

ments cut only along curves within symmetric areas which

limits the ability to process arbitrary building geometries

(e.g., [8]), and/or restricted geometric shapes (e.g., [30]).

Further, above methods only provide a procedural descrip-

tion and do not include integrated synthesis tools.

To our knowledge, our method is the first to provide au-

tomatic inverse procedural modeling for synthesis of arbi-

trary 3D architectural structures by discovering a set of pro-

cedural rules representing the input model and providing in-

tuitive and parameterized editing operations (Figure 1). Our

approach processes a polygonal architectural model, seg-

mented by a shape decomposition tool, without the need of

any hierarchy, constraint, or shape restriction. The proce-

dural rules, non-terminals, and terminals are then inferred

from the collection. The output is an instantiation of a

context-free split grammar including procedural hierarchies

2016 Fourth International Conference on 3D Vision

978-1-5090-5407-7/16 $31.00 © 2016 IEEE

DOI 10.1109/3DV.2016.28

194

2016 Fourth International Conference on 3D Vision

978-1-5090-5407-7/16 $31.00 © 2016 IEEE

DOI 10.1109/3DV.2016.28

194

2016 Fourth International Conference on 3D Vision

978-1-5090-5407-7/16 $31.00 © 2016 IEEE

DOI 10.1109/3DV.2016.28

194

2016 Fourth International Conference on 3D Vision

978-1-5090-5407-7/16 $31.00 © 2016 IEEE

DOI 10.1109/3DV.2016.28

194

2016 Fourth International Conference on 3D Vision

978-1-5090-5407-7/16 $31.00 © 2016 IEEE

DOI 10.1109/3DV.2016.28

194

with re-use of the grammar elements. Then, our method

automatically determines a set of attachment constraints on

the grammar elements to support style-preserving interac-

tive editing and synthesis. The resulting grammar is com-

pact editable via our GUI. Our method has two phases:

• Proceduralization: the model is organized into a split

tree, the nodes of the tree are inspected by a transfor-

mation space analysis to identify rules and their repe-

titions; the rules can be hierarchically organized, and

can contain regular patterns of up to three dimensions.

• Editing: the creation of novel buildings is enabled by

our interactive system or by editing the grammar; our

interactive system keeps the procedural model under

the hood and provides GUI-based new rule genera-

tion, rule application, terminal replacement, resizing,

and copy/paste operations. It also supports local and

global retargeting that preserves the relative adjacen-

cies by using a sparse least-squares optimization.

We show the application of our approach to edit a variety of

buildings, totaling up to 200K triangles per input building

and over a million triangles after synthesis. We automati-

cally applied our method to over 50 architectural models,

most of which are from Google Warehouse. On a standard

desktop computer, inferring the split grammar of a building

takes a few minutes, and our interactive editing and syn-

thesis tools can synthesize a new building in less than one

second. The computed grammar is a text file containing hi-

erarchies of parameterized rules and references to terminal

symbols. Our main contributions include:

• a novel and automatic inverse procedural modeling ap-

proach that converts a 3D architectural model into a

procedural representation,

• a structure discovery method to parse a collection of

building components into a split tree, and to find a hi-

erarchical nesting of patterns which can be output as a

context-free split grammar, and

• an interactive procedural engine for local and global

style-preserving synthesis and editing of 3D models.

2. Related Work
We relate our work to procedural and inverse procedu-

ral modeling, and shape editing. In addition, Supplemental

Part C contains an itemized comparison to previous papers.

Procedural Modeling is a powerful methodology used

for modeling plants (e.g., [22]), cities (e.g., [20]), and other

objects. Vanegas et al. [31] and Smelik et al. [24] present

comprehensive surveys of procedural modeling. Procedu-

ral modeling has a well-established history in urban design

such as shape grammars of Stiny et al.[26], the pattern lan-

guage of Alexander et al. [1], and, more recently, the pro-

cedural buildings of Wonka et al. [33], of Muller et al. [18],

Figure 2. Overview. Our approach takes an input model, extracts

components, finds patterns, constructs a split tree, builds a context-

free grammar, and enables interactive synthesis operations.

and of Schwarz et al. [23]. However, creating procedural

rules requires knowledge of the modeling language and of

the general style-codification process. While Lipp et al. [16]

(and CityEngine) describe interactive editing systems for

procedural buildings, they assume that procedural models

are provided a priori. We also seek to exploit procedural

modeling but we wish to avoid the tedious task of manually

writing a set of parameterized procedural rules to encode a

particular building style based on an input model.

Inverse Procedural Building Modeling seeks param-

eterized grammar rules and/or parameter values that yield

the provided model. Vanegas et al. [30] proposed an in-

verse procedural approach for reconstructing Manhattan-

world buildings, but do not produce a grammar nor demon-

strate editing. Bokeloh et al. [8] exploit the repetition of

partially symmetric structures and enable building model

synthesis. Nonetheless, their symmetry basis is surfaces,

thus any 3D segmented input is not applicable as input. Tal-

ton et al. [27] find a probabilistic grammar capturing the

patterns of a family of segmented and labeled hierarchical

designs provided as input. Talton et al. [28] and Vanegas

et al. [32] used Monte Carlo Markov Chain optimization

to discover how to alter the parameters of a given procedu-

ral model of a building and/or of a city so as to yield an

output satisfying a desired set of properties. Lastly, Demir

et al. introduced several proceduralization techniques, ap-

plying inverse procedural modeling to point clouds [12] for

improving the point cloud quality and providing procedural

editing, to textured city models [10] for proceduralizing ex-

isting cities for synthesis, and Nishida et al. [19] applied it

to sketching to facilitate creation of novel 3D content.

195195195195195

In contrast, our automatic approach produces a split

grammar, supports arbitrary 3D architectural models (in-

stead of just facades), creates hierarchical rules, does not

need labeled input, and supports various editing tools.

Moreover, many of the mentioned approaches assume the

procedural model is provided and only the parameter val-

ues need to be discovered. In contrast, our method assumes

no knowledge of the procedural model and generates both

grammar and parameter values.

Shape Editing covers multiple structure-aware editing

methodologies which have also been proposed for polyg-

onal models (e.g., see survey by Mitra et al. [17]). They

differ mainly in the level of automation, types of processed

geometries, support for hierarchical patterns, creation of an

explicit grammar, and editing flexibility and control. For ex-

ample, Pauly et al. [21] find patterns with translational, ro-

tational, and cylindrical grid arrangements. However, their

objective is not the generation of a grammar, little editing

control is provided, and hierarchical patterns are not sup-

ported. Some previous work [5, 13, 15, 36] support hier-

archical patterns but require user assistance. Lin et al. [15]

supports only 1D patterns while Kalogerakis et al. [13] of-

fer limited editing control. The approaches of Bokeloh et

al. [7, 9] provide flexible shape editing control, but no hi-

erarchical pattern support is provided and patterns must be

either 1D or only translational.

Our interactive approach is fully automatic, supports a

larger family of patterns, and a hierarchical rule organiza-

tion is also discovered. Our method generates an explicit

context-free split grammar and allows both local and global

structure-aware synthesis. Conflicting editing goals are re-

solved quickly using a sparse linear least squares optimiza-

tion rather than satisfying the desired edits in an a priori

determined importance order as in Zheng et al. [36] or by

solving a dense matrix with SVD as in Bokeloh et al. [9].

3. Proceduralization
Proceduralization takes an input architectural model and

automatically generates an instance of a split grammar G
that represents the model. In this section, we briefly de-

scribe the steps for proceduralization.

3.1. Segmentation and Component Labeling

The input to our approach is a 3D polygonal mesh that

can be either manually or automatically segmented. Then,

our method performs the component labeling. Suitable seg-

mentation can be performed using an architectural segmen-

tation algorithm such as Demir et al. [11], Attene et al. [4],

or Kalogerakis et al. [14]. In this paper, we primarily use

Demir et al. [11], since they focus on buildings, but we

show results using other segmentation algorithms as well

(Figure 8). After segmenting input model into components,

we compute the bounding box of each component and do

a check of triangle counts and bounding box dimensions to

ensure the labels are accurate (if labels are given by the seg-

mentation approach) or we compare the convex hull of the

components in addition to the previous properties to label

similar components (if no labels are assigned). However

most of the time the success of the labeling depends on the

segmentation approach, see the discussion of [11]. The

labeled components are then passed to the grammar extrac-

tion step (Section 3.3). This segmentation and labeling can

be considered a 3D extension of the layout concept by [34].

3.2. Split Grammar Definition

Our context-free split grammar notation is inspired by

other notations used in urban modeling (e.g., [18]), though

we define some compact extensions (Figure 3). The core

operation of the grammar is a volumetric split operation.

Split Tree. A split operation is described by a point di-

viding an enclosing box into octants and a selection of one

of the octants for subsequent use. The split tree T is com-

posed of a set of nodes P = {p0, . . . , pN}, with p0 being

the root node, and edges epipj storing a point split opera-

tion between a parent node pi and its child node pj . In our

implementation, a split operation is written as:

pj = split(pi, vx, vy, vz, q), (1)

where pi is the node to split by a pivot point (vx, vy, vz),
and octant q ∈ [1, 8] is extracted. The octant q defines

the subvolume corresponding to node pj and it can be logi-

cally assigned to either a terminal or a nonterminal of the G.

Children nodes have geometric parameters relative to their

parent node’s space. Each node also contains additional in-

formation about size, group label, axis-aligned box-shaped

volume, neighbors in the adjacency graph, global position,

and optionally a reference to component geometry.

Repetition Handling. Our grammar also supports the

definition and repeated application of rules (i.e., patterns)

– see Figure 4. Moreover, any regular or irregular pattern

can be encoded as a subtree of splits and exported as a

parametrized rule. However, not all patterns and transfor-

mations are explicitly recognized and parameterized. Pauly

et al. [21] defines and recognizes regular patterns involving

1-parameter groups of translation, rotation and scale. Our

application domain is architecture where scaling does not

commonly occur and thus we do not explicitly recognize

the repetitions where the units have varying scale. However

a scaling edit on a terminal/rule is supported and preserved

by our system. Using the same categorization as [21] our

approach recognizes up to k ≤ 3 parameter groups of trans-

lation. Patterns that contain rotation are also detected but

there is no special naming convention as subdivide, instead

they are exported as separate rules with their parameters.

A rule is defined as: Rule R1(pi) = {...}, where R1 is

the rule label, and pi is the node to which the collection of

196196196196196

Figure 3. Grammar. (a) Initial model and its extracted grammar. (b) New model with more windows produced by (c) a grammar

modification. (d) An army of buildings created by (e) multiple applications of a newly generated rule. (f) The result of random floors.

Figure 4. Rule Support. (a) Multiple applications of R1, (b) A

grid pattern of R1, (c) An irregular pattern of R1, captured by R2.

split operations {...} will be applied. A rule can be applied

following a k ≤ 3 parameter group translation pattern with

a subdivide command. Such patterns do not need to be axis-

aligned but must be regularly spaced where each element of

the pattern may vary by translation. Different applications

of the rule may vary by translation and rotation, and do not

need to be regularly spaced. A rule application is written as

R1(pi), or (2)

R1(subdivide(pi, sx, sy, sz[, dx, dy, dz])), (3)

where (2) corresponds to one application of rule R1 to node

pi, and (3) is an application pattern of rule R1 to node pi
subdivided into sx × sy × sz nodes. The optional vector

d = [dx, dy, dz] further defines the pattern: for k = 1, it is

the axis of repetition; for k = 2, it is the normal to the plane

of repetition, and for k = 3, it is a triplet of Euler angles

with respect to each axis.

Grammar. Our context-free split grammar is

G = 〈V,Σ, R, ω〉 ,
where G is the grammar, V is the set of non-terminals (i.e.,

root nodes of subtrees each representing a rule), Σ is the set

of terminals (i.e., leaves of T), R is the collection of rules

(i.e., split operations), and ω is a starting axiom (i.e., the

root node p0). Moreover, terminals are output to 3D model

files (e.g., OBJ files). Since the output can have arbitrary

polygonal data, G supports a variety of terminals, including

modern building architecture with curved surfaces.

3.3. Grammar Extraction

Given the segmented and labeled input model, our

method creates a split tree, labels rules, discovers patterns

of repetition, and exports G.

Tree Construction. In this first step, the labeled in-

put components are organized into a top-down constructed

split tree T (Supplemental Part A). First, all components are

placed in a list sorted by decreasing volume of their bound-

ing boxes. Then, the root node p0 is created using the entire

building bounding box. Afterwards, the next largest com-

ponent ci from the list is inserted into T . The insertion per-

forms a top-down search to find the parent node Ppci
with

the tightest fitting bounding box to ci. Our method com-

putes the parameters of one (or two) split operations that

obtain ci’s bounding box from Ppci
. With the split on the

edge, the node pci is created, and the component’s geometry

is stored in pci with vertices relative to the node’s bounding

box. This step repeats until all components are inserted.

197197197197197

Note that the bounding boxes are used only as containers

to organize the actual geometry within. The vertex coordi-

nates relative to the node boxes are converted to global co-

ordinates at export time. Thus, the nodes can represent vari-

ous shapes including curved and complex parts; see Supple-

mental Part E for more examples from modern architecture.

Rule Labeling. In this next step, T is labeled to identify

repeating and non-repeating subtrees – i.e., rules. This ap-

proach is inspired by the tree matching algorithms of Apos-

tolico and Galil [2]. Our system performs two phases of rule

labeling: a top-down phase to ensure that similar subtrees

are used for the same rule, and a bottom-up phase to extend

subtrees of the same rule to include their parent nodes.

The top-down phase performs a level order comparison

of same-label nodes. The comparison includes the node

properties as well as the topology of the subtrees. As previ-

ously mentioned, the subtree may contain some intermedi-

ate nodes that were created by the split operator to partition

a parent box into a child box – we encode those branches

as a “don’t care path” [2] without changing the breadth-

first comparison order. During this comparison, roots of

subtrees with similar nodes are marked as repeating occur-

rences of the same label. If a subtree differs from its group,

it is simply given a new label. This process ensures canon-

ization (so that the subtrees are replaceable).

The bottom-up phase carries the labeling up the tree by

synchronously comparing parents of same-label root nodes.

If parents are also similar, then labels are bubbled up to their

parents. In this way, the patterns are caught higher in the

tree, enabling better repetition detection and rule re-use.

Pattern Discovery. At this step, an iterative method is

performed so as to identify the pattern of repetition of the

grammar rules. To explicitly discover patterns, we use a

transformation space analysis similar to Stava et al. [25].

Our method computes the pairwise distances along each of

the x, y, and z axis between all subtree root nodes with same

rule label. Then, we search for the smallest distance that

almost exactly divides all other distances along each axis.

Multiple occurrences of a rule are joined under one node.

Given high repetition counts along the x, y, and z axis or

exact repetitions, the discovered pattern will be output using

the subdivide operation. The smallest distances, the number

of occurrences, and the global orientation are converted into

the k-parameter pattern use of the subdivide operation (Eqn

(3), Figure 4b). For other repetitive use of rules, the com-

mon ancestor is output as a rule (Eqn (2), Figure 4c)). Non-

repeating and low-repetition subtrees are not considered a

pattern and are output as separate rules (Figure 4a).

As an example, the pairwise distances from the upper left

window for Figure 4b would be (5,0), (10,0), (0,3), (5,3),

(10,5), for upper middle window (5,0), (5,3), (0,3), (5,3),

for upper right window: (10,3), (5,3), (0,3), for lower left

window: (5,0), (10,0), and for lower middle window: (5,0).

If we take the modulo of longer distances (10 modulo 5),

the pattern distance is revealed as (5,3) and the frequency of

repetition is 3x2x1 along each of the x,y,z axis. The result

is the rule “R1(subdivide(pi,3,2,1))”.

Grammar Exportation. Finally, our method computes

a declare-before-use rule ordering so that contained rules

are listed before the containing rules. After outputting rule

definitions, the non-repeating part of the grammar is output.

Further, leaf nodes Σ contain actual geometry. In this

manner, i) a building model may contain geometry that

would be inefficient to represent with a sequence of split

operations (e.g., a curved surface) or edited geometry that is

unsupported by the current algorithm (e.g., scaling), and ii)

repeating structures are stored only once, hence reduce the

model size. For example, the procedural model (including

terminals) of Figure 3d,f is 169 KB on disk, whereas their

corresponding models are 1.5MB and 2.2MB, respectively.

4. Editing
Our framework enables intuitive interactive editing op-

erations. Automatically adjusting the patterns in a forward

procedural modeling way (e.g., Figures 3c-f) creates new

instances of the building, which would have been more time

consuming if manually modeled. However, the user cannot

always easily determine the needed grammar changes be-

cause it is hard to foresee the outcome of a grammar change

since it might have global effects on all instances of a rule.

Thus, we provide a GUI to perform local and global edits as

well as specialized building alterations. The user can also

constrain editing to a local region, thus opting to leave some

of the features of the original building unaffected.

Altogether, our interactive system supports three fun-

damental operations: 1) resize, 2) split and join, and

3) copy/paste/add/remove. After editing, the new building

is exported as a model with the preserved component labels

being used as texture groups. In contrast to Lipp et al. [16],

our GUI provides stroke-based interaction where the user

only interacts with the geometric model, and the procedural

model (as well as its parameters) are kept under the hood.

4.1. Structure Preserving Resize

Our method can perform a structure-preserving resize on

a user-defined area. It changes multiple split operation pa-

rameters, which is not straightforward to perform via text-

editing. The adjacency relations of the nodes in the speci-

fied area are converted into attachment equations (Figure 5

and Supplemental Part D). Then, the optimization finds the

best set of split parameters that yield the desired new posi-

tion(s), maintaining the adjacencies. Further, if a tree node

is excessively resized, it will get split (or joined). All edit-

ing operations are demonstrated in our supplemental video.

Attachment Equations. A tree node pi‘s axis-

aligned box is represented by two vertices: the minimum-

198198198198198

Figure 5. Attachment Equations. Examples of (a) corner, (b)

edge, (c) plane, (d) volume, (e) size, and (f) position attachments.

valued vertex (aix , aiy , aiz) and the maximum-valued ver-

tex (bix , biy , biz) (i.e., {aix , aiy , aiz} ≤ {bix , biy , biz}).

Two constraints can be imposed on the node vertex coor-

dinates: coordinate equality (ai = bj or ai − bj = k) and

coordinate-pair overlap. The latter corresponds to ensuring

that the pairwise ratios are constant.

k1ij∗ =
bj∗ − ai∗
bi∗ − ai∗

and k2ij∗ =
bi∗ − aj∗
bi∗ − ai∗

(4)

In other words, keeping the ratios equal to their original

value will ensure that the amount of overlap is maintained

even if vertices are moved or scaled. Using these con-

straints, we define seven attachment equations (see Figure 5

and Supplemental Part D) using the minimum-valued and

maximum-valued bounding box vertices of nodes pi and pj :

1. Ground: attaches building to ground (e.g., aiz = 0).

2. Corner: attaches corners (e.g., ai = bj).

3. Edge: ensures edge overlaps are kept relatively the

same (e.g. Δk1ij∗ = 0, Δk2ij∗ = 0, ∗ ∈ {x, y, z}).

4. Plane: ensures plane overlaps are kept relatively the

same (e.g. Δk1ij∗ = 0 and Δk2ij∗ = 0 where ∗ is two

of {x, y, z}).

5. Volume: ensures volume overlaps are kept relatively

the same (e.g. Δk1ij∗ = 0 and Δk2ij∗ = 0 where ∗
is each of {x, y, z}). Note: volume attachment does

not mean containment; i.e., children of a node are not

volume-attached to their parent.

6. Size: if one or more dimensions of a node are

unattached at only one end, this equation attempts to

keep the original size (e.g., Δ(bi − ai) = 0).

7. Position: if one or more dimensions of a node are

unattached at both ends, this equation attempts to keep

the original position of the node (e.g., Δai = 0).

Attachment Optimization. After a node or subtree has

been edited, the attachment optimization solves for the new

ai‘s and bi‘s for each pi in the area of effect. We place

at least three of the aforementioned linear equations per

vertex into a large and sparse linear least squares formu-

lation that can be quickly solved. During a setup phase,

the system places the affected nodes in a processing queue

following a breadth first order of their spatial adjacency to

the main edited node(s). To save time, children of affected

pi’s are not enqueued, instead they are re-derived automat-

ically from their parents after the optimization. The sys-

tem marks whether all dimensions of ai’s and bi’s of all

effected pi’s are involved in at least one of the attachment

equations. Moreover, the optimizer assigns weights per at-

tachment type in order to normalize the equation values. In

addition, we observed that the relative importance of the

volume attachment is lower because it is harder to perceive

the difference in volume overlaps.

The system is guaranteed to never be under-constrained

thanks to the attachments 5 and 6, and is only mildly over-

constrained thanks to the marking process. In the former

case, the use of position attachments prevents flipping the

node’s vertices (i.e., negative box sizes). In the latter case,

flipping is possible, but in practice it does not occur because

solver finds a solution closest to the original configuration.

The new vertex values define the tree node boxes. If a

box is stretched by more than 1.8x of its initial size, then

it will be split in two copies of the node (or the subtree);

conversely, if a box is squeezed to less than 0.4x of its initial

size and the adjacent boxes are siblings of the same node,

then they are joined under one node. The new nodes are

put in the processing queue. Hence, the process may be

recursive (e.g., a very long wall may become 16 small walls

in just one step if stretched enough). Therefore, the resize

process can itself create new rules and patterns.

Finally, the split operation parameters and neighbor-

hood information are recomputed via our optimization. The

topology of the terminal elements is unaffected by resizing

because their vertex positions are relative to their volume.

Also, the use of the bounding boxes is for ensuring the in-

tegrity of coordinate attachments and does not limit editing

to box-shaped geometry (Supplemental Figure 6).

4.2. Split or Join

The user can either split or join a subtree. To split, the

user draws a split plane. The “splitted” geometry is divided

into two and a split operation is inserted into the tree yield-

ing the two new nodes. Then, the original node’s subtree is

duplicated and placed in each of those two new nodes. Join

is the inverse operation that merges and then creates a new

rule. If user selects a subset to join, the subtrees are joined

to form a single subtree. However, unlike split, join oper-

ation is topological, and if to-be-joined nodes have similar

199199199199199

subtrees, then a rule is created with the repetition, else they

are joined under one node. This join operation is also used

to make the pattern subtrees canonical as in Section 3.3.

4.3. Copy and Paste

Copy/paste operations correspond to selecting existing

rules and altering them, changing terminals, or forming a

new rule. First, the user selects some part of the build-

ing with our GUI and the corresponding nodes of the se-

lected region are joined to become the source. Then, the

user chooses the destination geometry, and the content is

similarly joined. The copy-and-paste operation is then per-

formed by either inserting or replacing the source, and ei-

ther filling or deriving from the destination. In particular,

• insert/replace: the source is inserted in-between the

destination root node and its subtree, where destination

patterns are preserved in the lower levels, or the source

replaces the destination, as the usual copy-and-paste

where the content of the destination is lost; and

• fill/derive: the source is used to fill the destination’s

volume by repetitively placing the source so as to

maintain its approximate aspect ratio (as a procedu-

ral copy-and-paste), or the relative parameters of the

source node are used to derive its shape as it is placed

within the destination volume.

In all cases, the copied subtree is rotated and fit so that

its dominant orientation matches that of the destination.

4.4. Model Output

The new model can be saved in .OBJ format anytime

during the editing session. When requested, the relative

vertex positions in each node is converted to global loca-

tions. Then, normals are calculated according to the current

vertices. The pattern information is used to create material

groups suitable for texture/material properties.

4.5. Structure Preserving Property

The interactive editing part works on the underlying tree

representation and on the adjacency graph of the nodes. For

the first case, the procedural editing part is based on chang-

ing rule parameters and fitting rules in defined spaces, thus

no invalid geometries are produced – only re-use of exist-

ing patterns occurs within their relative coordinate frames.

For the second case, the adjacencies between the nodes are

preserved by the linear system, thus invalid configurations

such as windows hanging in empty space cannot occur. The

integrity is guaranteed by the attachment constraints.

5. Results
We have used our system to detect procedural represen-

tations of a variety of architectural models and to perform

Figure 6. Models. The decomposition of examples into compo-

nents, number of discovered rules and number of unique terminals.

a multitude of edits (see also video). Our system is imple-

mented in C++, uses Qt and OpenGL, and runs on a desktop

computer clocked at 3.40GHz with an NVIDIA GTX680

card. Photorealistic renderings were done with Maya. The

system is currently not optimized for multiple cores nor uses

GPU for computing. A procedural representation of an in-

put model is generated in minutes and then can be edited

interactively. The time to perform a local interactive GUI-

based edit is under one second. A single global interactive

edit may take up to 30 seconds for our largest buildings (i.e.,

about 20 thousand equations). Our interactive editing can

handle relatively larger models faster than previous work

because we solve a sparse linear least squares system rather

than performing a dense SVD computation.

Figure 7. Grammar Editing. (a) Inter-building rules (circled are

applied to shorter one). (b) Intra-building rules: right wall adapts,

left wall is filled. (c-e) New rules: 4th floor is applied to the other.

Models. Figure 6 provides a summary of a subset of our

architectural models and their decomposition into number

of building components, number of discovered rules, and

number of unique terminal symbols. Twelve buildings in

that table are from Google Warehouse and the rest is output

of a well-known 3D building modeling program (Rev-it).

Overall, we have tested our proceduralization framework

on over 50 architectural models and have produced corre-

sponding grammars and edits.

200200200200200

Style Transfer. Building editing and synthesis can be

done by text-based grammar editing or by our interactive

system. An example in Figure 7a demonstrates how rules

from one building are re-used to synthesize a new building

(e.g., “style transfer”). 7b shows an operation of interac-

tively copying rules from one part of a building to another.

In 7c-e), the upper floor of the complex building is made

into a rule and the corresponding split grammar is output.

Then, a subset of the simpler building is selected and its

content is converted by the rule producing the 2nd floor.

Synthesis. Figure 9, Supplemental Figures 5, and 6

contain additional building examples. We show the orig-

inal building (rendered photorealistically), the input com-

ponents, one or more altered versions, and then one edited

version rendered photo-realistically. The editing sessions

are kept under 10 minutes for almost all models.

Segmentation Using Other Methods. We applied our

method to the segmentations resulting from three methods:

Graphite, Meshlab, and Demir et al. [11] (see insets in Fig-

ure 8). Then the labeling for the first two methods is done

by our approach as described in Section 3.1. In all cases,

our method was able to extract a reasonable set of rules,

though Demir et al.’s architectural method obtained the best

set of labeled components. Nonetheless, these evaluations

show that our method is decoupled from the segmentation

and able to handle a variety of segmentations.

As mentioned in Section 3, our terminals and grammar

expressivity depend on how the input is segmented and la-

beled. We evaluated that sensitivity in Supplemental Part

B, for different segmentations. We also experimented our

approach on point clouds, documented in Part B.

Limitations. Our approach is able to process any 3D

building mesh. However, if the input does not contain any

repetition or is significantly under-segmented, the entire

model is considered one element that leads to an uninter-

esting grammar. Supplemental Figure 2a and its statistics in

Row 14 of Figure 6 is an example of this behavior. Our ap-

proach cannot detect the presence of varying scale between

or within applications of the same rule. However, the user

can perform an edit that includes re-scaling, without losing

track of the pattern application. Finally, since we compute

adjacencies using bounding boxes during editing, our ap-

proach does not ensure adjacent terminals have a compati-

ble boundary. Nevertheless, in Figures 1 and Supplemental

Part E, we show several edited buildings with curved sur-

faces where the user ensures terminal faces are compatible.

6. Conclusions and Future Work
We address the problem of inverse procedural modeling

by converting an architectural model into a split tree and

extracting a context-free parameterized split grammar. Fur-

ther, we have created an interactive editing tool that sup-

ports building editing by either changing rule generation or

Figure 8. Segmentation Methods. We show three buildings seg-

mented by (top) Demir et. al [32], (middle) Graphite, and (bottom)

Meshlab, and then labeled by our method. The insets show the

pure segmentation (before labeling by out method). Depending on

the variety of segmentations, the labeling and extracted grammar

elements are mostly accurate for all approaches and models.

Figure 9. Interactive Editing. Results of interactive editing ses-

sions of Revit models. (a,i) Original models. (b-g, j-m) Color-

coded terminals. (h,n) New buildings rendered photorealistically.

changing rule parameters via a sparse linear least squares

optimization. We have demonstrated our method by editing

many 3D building models. Our results show how structure-

preserving edits can quickly and easily be made.

There are several avenues of future work. i) We would

like to extend our process to represent patterns with non-

constant spacing, as an extension of “subdivide”. ii) We

are interested in processing other domains, such as plants

or rigid bodies. A convenient approach would be using [21]

to explicitly output the pattern parameters of such models.

iii) Finally, we are considering ways to expand our split tree

representation to work with interior building models.

201201201201201

202202202

