Virtual Landscaping

Bedřich Beneš
Purdue University, USA

Oct 7th 2011
Siggraph Bogota 2011
Introduction

- One of the open problems in CG is modeling
- A wide variety of complex objects can be generated by visual simulation of Nature.

- We will show some attempts on how to visually simulate
 - terrains and
 - plants.
Terrains
Terrain Modeling

Problem
fractal-based techniques generate terrains that look like “just created”
Real terrains are *eroded*

Solution
erode terrains...
Terrain Modeling

We need erosion algorithms that are:

• realistic,
• user controlled,
• fast, and
• easy to include into existing systems
Terrain Modeling

Data Structures

a) for real-time rendering (ROAM, TINs, etc.)
b) for erosion simulation

regular height fields
voxel-based structures
layered data structures

[Benes, Forsbach, IEEE SCCG 2001]
Layered Data Structure

• Terrain is a composition of multiple layers of different materials
Layered Data Structure

- Data is represented as columns
- In fact a per column RLE compressed voxel rep.
- Various erosion algorithms can be implemented on this data
Hydraulic Erosion

• Erosion caused by water
• Realistic solutions solve Navier-Stokes equations for fluid dynamics
• Can be solved for 2D or 3D cases
 • 2D: shallow water simulation
 • 3D: Eulerian approaches
 • 3D: Lagrangian approaches
2.5 D Hydraulic Erosion

• Using shallow water equation
• Simulated using the pipe-model and the layered representation
2.5 D Hydraulic Erosion

• Three erosion models
 • thermal weathering
 • force-based erosion (caused by the running water)
 • still-water erosion (caused by material dissolution)
Thermal Weathering

• Material breaks apart because of thermal shocks
• Material slipping due to the gravity
• Talus angle defines maximum difference between heights of neighboring cells

B.Benes - Siggraph Bogota 2011
Thermal Weathering
Thermal Weathering
Thermal Weathering
2.5 D Hydraulic Erosion

- Three erosion models
 - thermal weathering
 - force-based erosion
 (caused by the running water)
 - still-water erosion
 (caused by material dissolution)

B.Benes - Siggraph Bogota 2011
Force-based erosion
Force-based erosion
Force-based erosion
Force-based erosion
2.5 D Hydraulic Erosion

• Three erosion models
 • thermal weathering
 • force-based erosion (caused by the running water)
 • still-water erosion (caused by material dissolution)
Still-Water Erosion

\[w(x,y) \]
\[r(x,y) \]
\[d(x,y) \]
Still-Water Erosion
Implementation

- Fully on the GPU
- Interactive for 1024x512x8 layers
- Multi-GPU support

[Stava, Benes, Brisbin, Krivanek, Eurographics/SIGGRAPH Symposium on Computer Animation, 2008]
Video
Video
Hydraulic Erosion

• erosion caused by water
• realistic solutions use Navier-Stokes equations for fluid dynamics
• solved for 2D or 3D cases
 • 2D: shallow water simulation
 • 3D: Eulerian approaches
 • 3D: Lagrangian approaches
Full 3D Simulation

• In voxel space
• Coupled Navier-Stokes equations and erosion/deposition model from hydrology
• CPU implementation
• pretty slow

Full 3D Simulation

• Cells in CFD are
 • FULL (water)
 • EMPTY (air)
 • MAT (material)
• we have extended this approach by varying FULL and EMPTY from 0 to 1.
• and by material exchange model (special actions for cell state change MAT->FULL, FULL->MAT, etc.)
• Material exchange boundary<->water
Maze Break
Maze Break
Maze Break
Meander Break
Waterfall
Underwater
Hydraulic Erosion

• erosion caused by water
• realistic solutions use Navier-Stokes equations for fluid dynamics
• solved for 2D or 3D cases
 • 2D: shallow water simulation
 • 3D: Eulerian approaches
 • 3D: Lagrangian approaches
Using Smooth Particle Hydrodynamics

• Similar idea, now coupled with particles
• Three phases
 1. material erosion
 2. material exchange between particles
 3. material deposition

Erosion

boundary particles

SPH particles

erosion

B. Benes - Siggraph Bogota 2011
Exchange

diffusion

donor

settling downwards

gravity

B.Benes - Siggraph Bogota 2011
Deposition

boundary particles

SPH particle deposition

relocated boundary particles

new level
Video
Conclusions

• Erosion simulation gives an important final touch to terrain scenes, difficult to achieve manually

• Problems and future work:
 • computationally expensive
 • low user control
Plants
Interactive Plant Simulation

Problem

- plants libraries and plant modeling software do not allow plants to interact with the environment

Solution

- do it interactively - plant “sculpting”

[Benes, Andrysco, Stava, *Eurographics NAT 2009*]
Plant Description

- Branching
- Biological model (Leeuwenberg and Raugh model)
- Bud lifespan
- Plant sensitivity to external impetus
- Target plant shapes
Plant Definition

- Growth is biologically-based
- Uses plant modules to control the growth
 - Apical bud
 - Lateral buds
 - Initially dormant
 - Activated after some time
Gravity

• Gravitropism
 • Branches tend to grow against gravity
Light and Phototropism

• plant growth is driven by buds ("plant engines")
• each bud determines its illumination
• finds the brightest spot (bending)
• % of illuminated buds on a branch determines its fate
Light and Phototropism
Competition for Resources

- Branches tend to avoid each other
- Using the Honda model [Honda67]
 - A buds has a sphere of interest
 - Two spheres cannot overlap
Competition for Resources

• a small ecosystem fighting for space
Competition for Resources
Examples
Urban Ecosystems
Our Goal is to
Previous work

• A vast body of previous work on plants and ecosystems in Computer Graphics exists.

• Plant spatial distribution emerges as artificial life from *plant competition for resources.*

• Could not we just use it?
Motivation

A wild ecosystem

A wild ecosystem in a city as a stencil

Urban ecosystem

B.Benes - Siggraph Bogota 2011
Key Observations

• Urban ecosystems are not wild at all.

• They have certain level of organization.

• Urban and architectural rules are applied together.

• Human intervention and management are involved.
Urban Ecosystem Overview

- Urban Layout
 - Urban Simulation
 - Geometry Generation

- Plant Distribution
 - Manageability Estimation
 - Initial Plant Distribution
 - Plant Management
 - Wild Ecosystem
 - Managed Plants

B.Benes - Siggraph Bogota 2011
Manageability

- Manageability is a measure of how much care is taken about the plants.
- Wild areas have low manageability.
- Gardens, wealthy areas, city downtowns, etc. have high manageability.

\[0 \leq m \leq 1\]

- \(m = 0\) wild ecosystem.
- \(m = 1\) perfect garden, no wild plants allowed.
Manageability control

Few managed areas
Balanced urban ecosystem
Over-managed ecosystem

Low manageability
High manageability

B.Benes - Siggraph Bogota 2011
Initial Plant Distribution

- Procedural planting in managed blocks (US cities):
 - along roads,
 - between buildings,
 - along the main axis,
 - within highest value blocks, and
 - at egress sites.

- Planting in unmanaged blocks
 - random seeding.
Roads

• Along the main roads and arterials

Real road

Procedural planting
Blocks

• Main axis of a block

Real block

Procedural planting
The highest manageability blocks

• Filled with green areas

Downtown Manhattan

Procedural planting (jittering)
Plant competition
Plant competition

- Plant seeding
Clusters emerge over time

- 25 years
- 75 years
- 100 years
- 125 years

B. Benes - Siggraph Bogota 2011
Implementation

- Intel i7 920 CPU clocked @ 2.67 GHz
- NVidia GeForce 480 with 1.5GB of memory
- Collisions and viability implemented in CUDA
 - City - plant collision by texture lookup
 - Plant - plant collisions analytically (bins)
- Visualization Engine:
 - kd-tree subdivision of space
 - LOD selection based on distance
Results

Fixed city layout:
- $3 \times 3 \ km^2$ area
- $\Delta t = 1 \ month$
- 70 years
- 250,000 plants
- simulated in 2 minutes
- CUDA 50 - 70Millions collision tests per second
Results

• Fixed urban layout filled with plants
Results: Low vs. high management

low management, more wilderness

high management, more regular patterns

B.Benes - Siggraph Bogota 2011
Results: Low vs. high management

- low management, more wilderness
- high management, more regular patterns
Results: Urban Layout Edits
Results: Urban Layout Edits
Conclusions

• Biologically-inspired computational graphics approach to urban ecosystem design.
• Seamlessly connected to existing methods for urban design in CG.
• Interactive urban layout edits.
• Easy level of control.
• With a set of extendible procedural rules.
Meta Conclusions

• What is next?

• Modeling is an open problem in CG
• User-assisted/controlled simulations can provide CG content
• User control is a problem
• Speed of processing and size of data as well..
Thanks

- This work would be impossible without my friends, colleagues, and students:
 - Daniel Aliaga, Purdue University
 - Nathan Andrysco, Purdue University
 - Matt Brisbin, DreamWorks
 - Peter Kristof, Purdue University
 - Jaroslav Krivanek, Cornell University
 - Radomir Mech, Adobe Inc.
 - Gavin Miller, Adobe Inc.
 - Ondrej Stava, Purdue University
 - Vaclav Tesinsky, Czech Technical University
 - Carlos Vanegas, Purdue University
 - Paul Waddell, University of California Berkeley
Thanks

• This work would be impossible without sponsors and grants
• Adobe Inc.
• NASA
• NSF
• NVIDIA CUDA Teaching Center
• MTC ABAG
• USDA-HECG, (CO-PI)
Virtual Landscaping

Bedřich Beneš
Purdue University, USA

Oct 7th 2011
Siggraph Bogota 2011