Lights and Lighting
Digital Lighting and Rendering
CGT 340

Lighting is 5% of light setup and 95% of revisions and adjustments.

Jeremy Birn

Lecture overview

- What is light?
- Spectrum
- Typical cases
- Metamers
- CG lights

Light

Light electromagnetic radiation between ~ 400 nm and ~ 700 nm

\(\lambda \) (nm)

- Radio waves
- Infrared
- Ultraviolet
- X-rays
- Gamma rays

Red
Orange
Yellow
Green
Blue
Indigo
Violet
Light Sources

Light source can be characterized by its emission spectrum or spectral characteristic, which is a graph of intensity of emission at different wavelengths.

- **Light source**

 • the daylight emission spectrum
 • it can be measured

 ![Graph of intensity vs. wavelength]

 - Wavelength [nm]
 - Intensity [W]

Light Sources

• **Light source**

 • Important special cases of light sources

 • Achromatic light: Usually perceived as white or gray
 • Increasing/decreasing the intensity of the achromatic light, we get brighter/darker gray
 • Monochromatic light (includes one chroma): Usually perceived as a pure color
 • The only intensity is the dominant wavelength or dominant frequency
 • Examples are a laser beam, a sodium bulb

 ![Graph of intensity vs. wavelength]

 - Wavelength [nm]
 - Intensity [W]

Light Sources

• Achromatic light
 • Lat. chroma = color

• Monochromatic light
Light Sources and Color

Will two different spectra be perceived as two different colors?

Always?

Metamers

• Two lights with different spectra that are perceived as the same color are called metamers.

• Why?
 • Convolution of the emission spectra over the eye light sensitivity for short, medium, and long cones gives the same numbers.

Color matching experiment

• change intensity of the three lights
• get the same color as of the source
• let the three lights be called A, B, and C
• they are called primaries

Light in Computer Graphics

• the three components
 • Diffuse light
 • Specular light
 • Ambient light
Light in Computer Graphics

- Diffuse ~ color
- Specular ~ reflections, highlights
- Ambient ~ indirect illumination, multiple reflections

This comes from reflections and it characterizes the material more than lights

Types of light sources

- Based on the way they shine:
 - Ambient light
 - Point light
 - Spot light
 - Directional light
 - Area light
 - Volume light

Let’s meet them personally

Phong Illumination Model

- Bui Tuong Phong (1973) University of Utah
- Empirical model of light reflection.
- Light and material have three components:

 1) Ambient light
 2) Diffuse light
 3) Specular light

Ambient Light

- Is constant in the entire scene
- An approximation of multiple reflections

\[I_a = I_{AB} + I_{AG} + I_{AB} \]

(intensity of ambient)
Ambient Light

- Ambient light does not have a position

\[
R_a = k_a \otimes I_a = [k_{ag} * L_{ag}, k_{ab} * L_{ab}]
\]

Example:
Surface reflects color: \(\text{material} = [1,0,0] \) (red)
Illuminated with: \(\text{light} = [0,0,1] \) (blue)

\[
\text{reflected} = \text{material} \otimes \text{light} = [1x0, 0x0, 0x1] = [0,0,0]
\]
(the symbol \(\otimes \) means per-element multiplication)

Light Sources

Characterized by their diffuse and specular component

\[
I_s = [L_{sr}, L_{sg}, L_{sb}]
\]

\[
I_r = [L_{rr}, L_{rg}, L_{rb}]
\]
Material

Material is characterized by its ability to reflect:

- Specular light: \(k_s = [k_{sR}, k_{sG}, k_{sB}] \)
- Diffuse light: \(k_d = [k_{dR}, k_{dG}, k_{dB}] \)
- Ambient light: \(k_a = [k_{aR}, k_{aG}, k_{aB}] \)
- Shinniness: \(S \)

More is needed

- The eye position \(E \)
- The light position \(L \)
- The normal vector \(N \)
- The vertex position \(v \)

Diffuse Term

Depends on the position of the light and the vertex.

The Lambert's law:

\[R_d = k_d \otimes I_d \cdot \max(N \cdot L, 0) \]

\(N \cdot L \) is the dot product of the normal vector and the direction to the light.

Lambertian or matte reflection: incoming light is spread into all directions with equal probability, corresponding to a plastic material.

- Perfect diffuse surface (Lambertian surface)
- (plastic, chalk)
- \(f_r = p_r / \pi \)
- \(p_r \) is the ratio of the reflected to the incident energy (0 \(\leq \rho_r \leq 1 \))
- \(\pi = \int \cos \theta d\omega \)
- \(\Theta \)
Diffuse Term

• Depends on the \(V, L, \) and the eye position

\[
R_S = (V \cdot R)^5 I_S \otimes M_S
\]

\(V \) is vector to the viewer,
\(R \) is the reflected ray direction, and
\(S \) is the shininess coefficient

\(L \) is vector pointing to the light,
\(N \) is the normal vector to the surface

Blinn-Phong Specular Term

\[
R_S = (\max(H \cdot N), 0)^5 I_S \otimes M_S
\]

depends on

\(H \) is so called bisector,
\(S \) is the shininess coefficient

No reflected vector is needed, so it is slightly faster

But also a bit different

Specular Term

Specular (glossy) reflection acts as a ray of light

Idealized specular surface is a mirror

Perfect specular surface (mirror)

\[
\rho_s = \rho_s \delta(\theta_m) / \cos \theta
\]

\(\rho_s \) is the ratio of the reflected to the incident energy \((0 \leq \rho_s \leq 1) \)

the Dirac pulse is

\[
\delta(\theta_m) = \begin{cases} 1 & \theta_m = 1 \\ 0 & \text{otherwise} \end{cases}
\]
Specular Term

The Shinniness

Phong Reflection Model
Putting this all together

Reflected light is

\[R = R_A + \sum_{i=0}^{n} (R_D^i + R_S^i) \]

i.e., ambient light for complete scene plus sum of the diffuse and specular contributions of all lights

The result is _clamped_ to \([0,1]\)
It means, if the reflection is 1
another light does not increase it!

Phong Reflection Model Summary

- due to the ambient light nothing can be entirely black
- mirror reflections are possible
- can be computed very fast (used in VR and games)
- very good approximation of diffuse surfaces
- physically inaccurate
- expressed in terms of vector geometry

Phong Reflection Model Summary

- An example of Phong Reflection Model in Ray Tracing

Ambient Light

- Why not to use it?
 - does not depend on any angle
 - is a flattered fill of a color
 - the best is – turn it OFF
 - but we do need the indirect illumination...
 - use fill lights, but dim them
Ambient Light – one light

Ambient Light - ambient

Ambient Light - directional

Ambient [0, 0.25, 0.5, 1.0]
Ambient Light

- Maya
- Attribute
 Ambient Shade=0 -> behaves as ambient
 Ambient Shade=1 -> behaves as point

Point Light Source

- Also called *omni, omnidirectional*
- Does *not* exist in reality
- Mathematical abstraction
- Like a light bulb in the middle of a room
- The fastest light source to calculate

Point Light Source

- Trick in Maya
 - set negative intensity
 - behaves like a “negative light”
Spot Light
- The most commonly used
- Probably the most powerful light source
- The best controlled light
- It is a point light that is aimed somewhere
- It has its: target, cone, penumbra angle, etc.

Spot Light - positioning
- Select light
- Panel-> Look through selected

Spot Light
- Reflector
- Point light with more parameters
- Positioning
 - press object pick ("T") to put and situate

Spot Light - positioning
- Aiming to an object
- Panel -> View -> Look at Selection
Spot Light- cone angle 40°

Spot Light- cone angle 70°

Spot Light- penumbra angle 20°

Spot Light- drop-off 140°
Spot Light – color as a file

Throw

- Cookies and gobos
- “cookie” – cuicoloris
- “gobo” – go-between objects between lights and the occluder
- Venetian blinds, fan on ceiling etc.
- Can be done by a model
- Easier by a light map

Spot – light mapping intensity

- $I = f(d)$
- Can be mapped manually
- The Graph Editor
- Window -> Animation Editors -> Graph editor
- Select the spotlight
- In the Light Effect option select Intensity Curves
- Use the middle key to move the points
Spot – light mapping intensity

Spot Light – making a soft shadow
- DLR 2nd edition page 22
- Aim multiple lights so they overlap
- Decrease the penumbra angle
- It is not a shadow! But it looks cool...

Directional Light
- Depends only on an angle
- Translation does not make any sense
- Represents distant light sources
- Point in infinity (vector)
- All rays are parallel
- Fast to calculate
- Can project images
Directional Light

Area Light

- **spherical light**
 - good when close to an object
 - for large distance ~ point
- **flat area**
 - disc, rectangle
 - faster to calculate
 - good for lamps, etc
- **linear light**
 - fluorescent tube

Area Light

- Rectangular (in Maya)
- The slowest to calculate
- The *only* that produces soft shadows
- Object pick ("T") to put and situate

Area Light

- The size does matter!
- The bigger the light source, the more illuminated the scene
Area Light

Volume Light

- In Maya
- 3D shape and the light direction (in, out, etc.)
- Everything inside the volume is illuminated

Volume Light

Light Linking

- Also called *selective lighting*
- Maya → Relationship Editor
- Light/Shading → Light linking
- Defines which light shines on which object
- Can *significantly increase speed of rendering*
Light Linking – two lights

Light Linking

Light Linking

Shadows

- one of the most important visual clues
- help to establish spatial relationship
Shadows

- can help to see alternate angles

Shadows

- increase contrast of a scene
- shadow color is important! intense color can be used to see what is actually lit
- can help to divide the space

Shadows

- Black shadow is not natural (always?)
Shadows

- Use fill light to brighten shadows

Shadows - algorithms

- Shadow map
 - fast and usually ugly
 - problems with transparency
- Raytraced shadows
 - excellent choice
 - slow
 - critical – shadow rays
 - higher ~ slower, better

Shadow Geometry

Light source

Can a point light produce soft shadows?

Shadows - raytraced

- Penumbra quality = f(shadow rays)
Shadows – shadow mapped

- Shadow quality = f(size of the map)

Ambient Occlusion

- Important and neat effect that darkens wrinkled parts
- Done by hemicube or hemispherical sampling

Ambient Occlusion

- Can be achieved by Global Illumination

Ambient Occlusion

- Is calculated *without* a light source
- Very soft shadows
- Very nice
- Details – later in Global Illumination
Lens Flares and Halos

- Nice and cheap effect
- Caused by multiple reflections in camera’s lenses
- In Maya associated with a light source
- Can be active/inactive

Lens Flares and Haloes

- Select light source
- Go to Light effects and select Light Glow
- Select Lens Flares
- Glow spread controls the distance the glow goes
- Ignore light will display just the effect

Qualities of light

- Soft/Hard
- Intensity
- Color
- Throw
- Animation
Soft/Hard Light

- Means in fact, soft/hard shadow
- Soft shadows can be simulated by more light sources
 - faster, easier
 - each light will have 1/n-th intensity
- Hard light – sunlight, close light bulb

Soft/Hard Light

- Hard light
 - sunlight, close light bulb
 - space scenes, inhospitable environments

- Soft lights
 - warm environments
 - distance lights

Rules of thumb

- Isolate one light to see its influence
- Start with small intensities
- Lighting is linear! (thank G-d!)
- Use flipbook to see the influences
- Area lights at the end
- Area lights may not be necessary in animations

To take home...

- Light is...
- Metamers
- Types of light sources (point, spot...)
- Why not to use ambient light
- Why a spot is the best light source
- Shadows and tricks with them
- Rules of thumb
Readings

- Andrew Glassner, Principles of Digital Image Synthesis
- Donald Hearn, M.Pauline Baker.
- F.S.Hill,
 Computer Graphics, Prentice Hall 1990, pages 564->
- Watt, Watt, 2nd edition,
 Advanced Animation and Rendering Techniques
- Cohen, Wallace,
 Radiosity and Realistic Image Synthesis